- CODY, V. & SUTTON, P. (1987). Anti-Cancer Drug Design, 2, 253-262.
- DAVIES, K. (1986). CHEM-X, developed and distributed by Chemical Design Ltd, Oxford, England.
- DIMMLER, D. G., GREENLAW, N., KELLEY, M. A., POTTER, D. W., RANKOWITZ, S. & STUBBLEFIELD, F. W. (1976). *IEEE Trans. Nucl. Sci.* 23, 398–405.
- HUNT, W. E., SCHWALBE, C. H., BIRD, K. & MALLINSON, P. D. (1980). Biochem. J. 187, 533-536.
- International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., p. 197. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KOESTER, L. (1977). Springer Tracts in Modern Physics, Vol. 80, Neutron Physics, edited by G. Höhler, pp. 1–55. Berlin, Heidelberg, New York: Springer-Verlag.

- KOETZLE, T. F. & MCMULLAN, R. K. (1980). Unpublished.
- KOETZLE, T. F. & WILLIAMS, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074–2078.
- MCMULLAN, R. K. AND IN PART ANDREWS, L. C., KOETZLE, T. F., REIDINGER, F., THOMAS, R. & WILLIAMS, G. J. B. (1976). NEXDAS. Neutron and X-ray Data Acquisition System. Unpublished.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*78. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SCHWALBE, C. H. & CODY, V. (1983). Chemistry and Biology of Pteridines, edited by J. A. BLAIR, pp. 511-515. Berlin: de Gruyter.
- SCHWALBE, C. H. & HUNT, W. E. (1978). J. Chem. Soc. Chem. Commun. pp. 188-190.
- SYKES, G. & SCHWALBE, C. H. (1987). J. Pharm. Pharmac. 39, 114P.

Acta Cryst. (1989). C45, 471-475

Structures of Bis(3-phenylsydnone) Sulfide (1), Bis[3-(*p*-methoxyphenyl)sydnone] Sulfide (2), and Bis[3-(*p*-ethoxyphenyl)sydnone] Sulfide (3)

By Chuen-Her Ueng* and Yu Wang†

Department of Chemistry, National Taiwan University, Taipei, Taiwan

AND MOU-YUNG YEH

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan

(Received 27 July 1988; accepted 10 October 1988)

Abstract. (1) $C_{16}H_{10}N_4O_4S$, $M_r = 354$, monoclinic, $P2_1/n, a = 10.347(2), b = 7.777(1), c = 19.796(4)$ Å, $\beta = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 1567.13 \text{ Å}^3, \quad Z = 4, \quad D_m = 100.33 (2)^{\circ}, \quad V = 100.33 (2)$ 1.52 (3), $D_x = 1.50 \text{ g cm}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.7093 \text{ Å}$, μ (Mo K α) = 2.26 cm⁻¹, F(000) = 728, T = 298 K, final R = 0.033 for 2922 observed reflections. (2) C₁₈- $H_{14}N_4O_6S$, $M_r = 414$, monoclinic, $P2_1/c$, a =14.255 (2), b = 9.344 (1), c = 15.250 (2) Å, $\beta =$ 116.61 (1)°, $V = 1816.12 \text{ Å}^3$, Z = 4, $D_m = 1.50$ (3), $D_r = 1.52 \text{ g cm}^{-3}$, $\lambda(\text{Mo } K\alpha) = 0.7093 \text{ Å}$, $\mu(\text{Mo } K\alpha)$ $= 2 \cdot 14 \text{ cm}^{-1}$, F(000) = 856, T = 298 K, final R =0.039 for 2066 observed reflections. (3) C₂₀H₁₈N₄O₆S, $M_r = 442$, monoclinic, C2/c, a = 20.724 (5), b =12.157 (3), c = 8.201 (3) Å, $\beta = 95.10$ (2)°, V =2057.88 Å³, Z = 4, $D_m = 1.45$ (3), $D_x = 1.43$ g cm⁻³, $\mu(\text{Mo } K\alpha) = 1.94 \text{ cm}^{-1},$ λ (Mo K α) = 0.7093 Å, F(000) = 920, T = 298 K, final R = 0.039 for 1088 observed reflections. The bond lengths of the sydnone ring are similar in all three compounds and comparable to those of other 3,4-disubstituted sydnone derivatives.

The N(1)–C(7) bonds of the title compounds are apparently longer than those of 3-substituted sydnone derivatives which may be attributed to steric effects. A survey of S–C bond lengths and angles between planes of different substituted diaryl sulfides does not show any correlation with the type of substituents. The shortening of the S–C bond lengths of the title compounds *versus* the average bond lengths in the cyclic 1,3,5-trithiane may be attributable to orbital electronegativity effects. In contrast to the 'morino' conformation found in most other diaryl sulfides, all three title compounds appear in the butterfly conformation.

Introduction. The crystal structures of a few 3,4disubstituted sydnone derivatives have recently been studied (Ueng, Wang & Yeh, 1987a,b) and the bond lengths of the sydnone rings were compared with those of 3-substituted sydnone derivatives. As part of a series of studies on 3,4-disubstituted sydnone compounds, the three bis-sydnone sulfide structures were investigated in order to confirm further the steric effect between the phenyl ring and the sydnone ring. In addition, the lone-pair electrons on the S atom may have some effect

471

© 1989 International Union of Crystallography

^{*}Permanent address: Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.

[†] To whom correspondence should be addressed.

on the S-C bond for these compounds. The conformation of such compounds around the S atom is also of interest.

Table 1. Atomic positional parameters and equivalent isotropic temperature factors for (1), (2) and (3)

$$B_{eq} = (8/3)\pi^2 \sum_i \sum_i U_{ii} a_i^* a_i^* a_i \cdot a_i.$$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		x	v	z	$B_{\rm es}({\rm \AA}^2)$
	Compound (1)		,	_	- eq /
$\begin{array}{cccc} C14 & 0.6655 (1) & 0.3777 (2) & 0.2852 (1) & 3-1 (1) \\ C34 & 0.6579 (2) & 0.4576 (2) & 0.3461 (1) & 3-7 (1) \\ C34 & 0.4260 (2) & 0.4900 (3) & 0.3226 (1) & 4-6 (1) \\ C44 & 0.4260 (2) & 0.3302 (3) & 0.2618 (1) & 4-8 (1) \\ C54 & 0.9508 (2) & 0.3302 (3) & 0.2618 (1) & 4-8 (1) \\ C54 & 0.9908 (2) & 0.3242 (2) & 0.2535 (1) & 3-0 (1) \\ C34 & 0.9986 (2) & 0.3242 (2) & 0.2535 (1) & 3-0 (1) \\ N24 & 0.79964 (1) & 0.4266 (2) & 0.2023 (1) & 4-0 (1) \\ N24 & 0.7964 (1) & 0.4266 (2) & 0.2033 (1) & 4-0 (1) \\ O24 & 1.1142 (1) & 0.2957 (2) & 0.2580 (1) & 4-9 (1) \\ O24 & 1.1142 (1) & 0.2957 (2) & 0.2580 (1) & 4-9 (1) \\ C28 & 1.2302 (1) & 0.1406 (2) & 0.44757 (1) & 4-1 (1) \\ C28 & 1.3307 (2) & -0.0713 (3) & 0.3322 (1) & 4-1 (1) \\ C58 & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4+4 (1) \\ C58 & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4+4 (1) \\ C58 & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4+4 (1) \\ C58 & 1.3453 (2) & 0.524 (2) & 0.4475 (1) & 4+1 (1) \\ C58 & 1.3407 (2) & -0.3475 (2) & 0.4478 (1) & 3-1 (1) \\ C18 & 1.1564 (1) & 0.366 (2) & 0.4417 (1) & 4+4 (1) \\ C18 & 1.1564 (1) & 0.5751 (2) & 0.4649 (1) & 3-1 (1) \\ C14 & 0.0708 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N24 & 0.0310 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1663 (2) & 2-9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1059 (2) & 5-5 (2) \\ C14 & 0.3980 (2) & 0.2708 (3) & 0.1059 (2) & 5-5 (2) \\ C14 & 0.3980 (2) & 0.2708 (3) & 0.1059 (2) & 5-7 (2) \\ C44 & 0.3980 (2) & 0.2024 (4) & 0.3866 (2) & 3-7 (2) \\ C54 & 0.3261 (2) & 0.3374 (3) & 0.3148 (2) & 3-7 (2) \\ C54 & 0.3261 (2) & 0.3374 (3) & 0.3148 (2) & 3-7 (2) \\ C18 & 0.4381 (2) & 0.2028 (4) & 0.1059 (2) & 5-5 (1) \\ N18 & 0.1053 (2) & 0.2034 (4) & 0.2302 (2) & 2-9 (1) \\ N18 & 0.1053 (2) & 0.2034 (4) & 0.2305 (2) & 5-6 (1) \\ N18 & 0.1053 (2) & 0.2303 (3) & 0.3337 (3) & 0.1985 (2) & 5-6 (1) \\ C28 & 0.5118 (3) & 0.3946 (3) & 0.0963$	S	0.9319(1)	0.2026(1)	0-37728 (2)	3.1(1)
$\begin{array}{cccc} C24 & 0.6579 (2) & 0.4576 (2) & 0.3461 (1) & 3.7 (1) \\ C34 & 0.5355 (2) & 0.4717 (3) & 0.36451 (1) & 4.6 (1) \\ C44 & 0.4260 (2) & 0.3003 (3) & 0.2618 (1) & 4.8 (1) \\ C54 & 0.4362 (2) & 0.303 (3) & 0.2618 (1) & 4.8 (1) \\ C74 & 0.9058 (1) & 0.2990 (2) & 0.2969 (1) & 2.9 (1) \\ N14 & 0.7920 (1) & 0.3656 (2) & 0.2635 (1) & 3.0 (1) \\ N14 & 0.7920 (1) & 0.3656 (2) & 0.2635 (1) & 3.0 (1) \\ N14 & 0.7920 (1) & 0.4027 (2) & 0.1948 (1) & 4.3 (1) \\ O14 & 0.9252 (1) & 0.4027 (2) & 0.1948 (1) & 4.3 (1) \\ O14 & 0.9252 (1) & 0.4027 (2) & 0.1948 (1) & 4.3 (1) \\ O14 & 0.9252 (1) & 0.4005 (2) & 0.5321 (1) & 3.6 (1) \\ C1B & 1.2362 (1) & 0.1406 (2) & 0.4572 (1) & 3.1 (1) \\ C4B & 1.3722 (2) & -0.0971 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.3037 (2) & -0.0971 (3) & 0.4109 (1) & 4.4 (1) \\ C6B & 1.2619 (2) & 0.0545 (2) & 0.4276 (1) & 3.8 (1) \\ C1B & 1.0438 (1) & 0.3466 (2) & 0.4181 (1) & 2.9 (1) \\ C8B & 1.0342 (2) & 0.5246 (2) & 0.4276 (1) & 3.6 (1) \\ N1B & 1.1719 (1) & 0.3061 (2) & 0.4490 (1) & 3.1 (1) \\ N2B & 1.2402 (1) & 0.4359 (2) & 0.4785 (1) & 4.2 (1) \\ O2B & 0.9470 (1) & 0.6275 (2) & 0.4117 (1) & 4.4 (1) \\ Compound (2) \\ S & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3.1 (1) \\ N14 & 0.0708 (2) & 0.2709 (3) & 0.1663 (2) & 2.9 (1) \\ N14 & 0.0708 (2) & 0.2708 (3) & 0.1693 (2) & 5.5 (2) \\ C34 & -0.183 (2) & 0.2578 (3) & 0.1591 (2) & 3.9 (2) \\ C14 & 0.183 (2) & 0.2578 (3) & 0.1591 (2) & 3.9 (2) \\ C14 & 0.183 (2) & 0.2578 (3) & 0.1591 (2) & 3.9 (2) \\ C14 & 0.183 (2) & 0.2578 (3) & 0.1591 (2) & 5.5 (2) \\ C34 & 0.3449 (2) & 0.3286 (3) & 0.3666 (2) & 3.7 (2) \\ C34 & 0.3449 (2) & 0.3286 (3) & 0.3666 (2) & 3.7 (2) \\ C34 & 0.3449 (2) & 0.2268 (3) & 0.1591 (2) & 5.5 (2) \\ C34 & 0.3449 (2) & 0.3286 (3) & 0.3666 (2) & 3.7 (2) \\ C34 & 0.5320 (1) & 0.192 (2) & 0.2466 (2) & 3.7 (2) \\ C34 & 0.5320 (1) & 0.1632 (2) & -0.0097 (3) & 3.5 (1) \\ N18 & 0.1033 (2) & 0.2395 (2) & 4.5 (2) \\ C18 & 0.2395 (2) & 0.0337 (3) & 0.0985 (2) & 4.5 (2) \\ C36 & 0.3414 (1) & 0.0332 (2) & 0.2306 (4) & 4.6 (2) \\ C3 & 0.5233 (2) & 0.1488 (2) & 0.2302 (4) & 4.8 (2) \\ C26$	CIA	0.6655 (1)	0.3777 (2)	0.2852(1)	3.1(1)
$\begin{array}{cccc} C34 & 0.4355 (2) & 0.4717 (3) & 0.3645 (1) & 4.6 (1) \\ C54 & 0.4362 (2) & 0.302 (3) & 0.2226 (1) & 4.9 (1) \\ C54 & 0.9986 (2) & 0.313 (3) & 0.2618 (1) & 4.8 (1) \\ C64 & 0.9986 (2) & 0.313 (3) & 0.2618 (1) & 4.9 (1) \\ C84 & 0.9986 (2) & 0.3242 (2) & 0.2533 (1) & 3.5 (1) \\ N14 & 0.7926 (1) & 0.4564 (2) & 0.2023 (1) & 4.0 (1) \\ O14 & 0.9252 (1) & 0.4027 (2) & 0.1948 (1) & 4.3 (1) \\ O24 & 1.1142 (1) & 0.2957 (2) & 0.2380 (1) & 4.9 (1) \\ C18 & 1.2362 (1) & 0.1406 (2) & 0.4572 (1) & 3.1 (1) \\ C28 & 1.2750 (2) & -0.0905 (2) & 0.5321 (1) & 3.6 (1) \\ C3B & 1.3435 (2) & -0.0721 (3) & 0.5322 (1) & 4.1 (1) \\ C5B & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.3017 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.3017 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.3017 (2) & -0.0977 (3) & 0.4109 (1) & 3.8 (1) \\ N18 & 1.1719 (1) & 0.3061 (2) & 0.4490 (1) & 3.1 (1) \\ N2B & 1.0483 (1) & 0.5751 (2) & 0.4785 (1) & 4.2 (1) \\ O1B & 1.402 (2) & 0.5246 (2) & 0.4181 (1) & 2.9 (1) \\ N2B & 1.0947 (1) & 0.6273 (2) & 0.4107 (1) & 4.4 (1) \\ Compound (2) \\ S & 0.9470 (1) & 0.6273 (2) & 0.4107 (1) & 4.1 (1) \\ C74 & 0.0003 (2) & 0.2709 (3) & 0.1663 (2) & 2.9 (1) \\ N14 & 0.0708 (2) & 0.217 (2) & 0.2466 (2) & 3.1 (1) \\ O14 & -0.0757 (2) & 0.1430 (2) & 0.2395 (2) & 4.8 (1) \\ O24 & -0.310 (2) & 0.2396 (3) & 0.3066 (2) & 3.7 (2) \\ C34 & 0.0310 (2) & 0.2362 (3) & 0.1591 (2) & 3.9 (2) \\ C44 & 0.3980 (2) & 0.0217 (2) & 0.2466 (2) & 3.8 (1) \\ O14 & -0.0757 (2) & 0.1430 (2) & 0.2392 (2) & 2.9 (1) \\ N14 & 0.0708 (2) & 0.217 (2) & 0.2466 (2) & 3.1 (1) \\ O14 & -0.0757 (2) & 0.133 (0) & 0.1659 (2) & 5.5 (2) \\ C34 & 0.0310 (2) & 0.2362 (3) & 0.1059 (2) & 5.5 (2) \\ C34 & 0.0349 (2) & 0.0217 (2) & 0.2466 (2) & 3.7 (1) \\ O14 & -0.0757 (2) & 0.1236 (3) & 0.3056 (2) & 3.7 (2) \\ C34 & 0.0349 (2) & 0.0208 (4) & 0.3656 (2) & 3.7 (2) \\ C34 & 0.0349 (2) & 0.0308 (2) & 0.0019 (2) & 2.8 (1) \\ N14 & 0.0708 (2) & 0.2022 (2) & 2.9 (1) \\ N14 & 0.0708 (2) & 0.0034 (1) & 0.2500 & 3.5 (1) \\ O25 & 0.248 (1) & 0.0336 (2) & 0.0038 (2) & 3.5 (1) \\ O3 $	C2A	0-6579 (2)	0.4576 (2)	0-3461 (1)	3.7(1)
$\begin{array}{cccc} C44 & 0-4260 (2) & 0-4090 (3) & 0-3226 (1) & 4-9 (1) \\ C54 & 0-4362 (2) & 0-3302 (3) & 0-2218 (1) & 4-8 (1) \\ C64 & 0-5569 (2) & 0-3135 (3) & 0-2417 (1) & 3-9 (1) \\ C74 & 0-9086 (2) & 0-3242 (2) & 0-2535 (1) & 3-5 (1) \\ N14 & 0-7920 (1) & 0-3656 (2) & 0-2335 (1) & 3-6 (1) \\ N14 & 0-7920 (1) & 0-3656 (2) & 0-2033 (1) & 4-0 (1) \\ O14 & 0-9252 (1) & 0-4027 (2) & 0-1948 (1) & 4-3 (1) \\ O24 & 1-1142 (1) & 0-2957 (2) & 0-2032 (1) & 4-1 (1) \\ C1B & 1-2362 (1) & 0-1406 (2) & 0-4572 (1) & 3-1 (1) \\ C2B & 1-3262 (2) & -0.0058 (2) & 0-5231 (1) & 3-6 (1) \\ C3B & 1-3435 (2) & -0-0771 (3) & 0-4109 (1) & 4+4 (1) \\ C5B & 1-3307 (2) & -0-0977 (3) & 0-4109 (1) & 4+4 (1) \\ C6B & 1-2619 (2) & 0-0545 (2) & 0-4003 (1) & 3-8 (1) \\ N1B & 1-1719 (1) & 0-366 (2) & 0-4767 (1) & 3-5 (1) \\ N1B & 1-1719 (1) & 0-366 (2) & 0-4767 (1) & 3-1 (1) \\ C2B & 1-0483 (1) & 0-3466 (2) & 0-4767 (1) & 3-1 (1) \\ C2B & 1-0483 (1) & 0-3455 (2) & 0-4787 (1) & 3-1 (1) \\ C7A & 0-0003 (2) & 0-2709 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2709 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2707 (3) & 0-156 (3) & 0-1597 (2) & 3-7 (2) \\ C44 & 0-3880 (2) & 0-2044 (3) & 0-3148 (2) & 3-7 (2) \\ C54 & 0-3449 (2) & 0-3256 (3) & 0-1059 (2) & 3-7 (2) \\ C54 & 0-3449 (2) & 0-3256 (3) & 0-3066 (2) & 3-7 (2) \\ C54 & 0-3449 (2) & 0-3286 (3) & 0-3066 (2) & 3-7 (2) \\ C34 & 0-3489 (2) & 0-0044 (2) & 0-1155 (3) & 4-64 (1) \\ O18 & -0-0258 (2) & 0-0312 (2) & -00494 (2) & 3-18 (1) \\ N1B & 0-1053 (2) & 0-0363 (3) & 0-0605 (2) & 3-7 (2) \\ C44 & 0-2344 (2) & 0-2360 (3) & 0-3354 (3) & 0-0963 (2) & 3-5 (4) \\ C5B & 0-3518 (3) & 0-3946 ($	C3A	0.5355 (2)	0.4717(3)	0.3645(1)	4.6(1)
$\begin{array}{cccc} C34 & 0-362 (2) & 0-302 (3) & 0-2018 (1) & 4-8 (1) \\ C54 & 0-556 (2) & 0-313 (3) & 0-2417 (1) & 3-9 (1) \\ C7A & 0-9058 (1) & 0-2990 (2) & 0-2969 (1) & 2-9 (1) \\ C84 & 0-996 (2) & 0-324 (2) & 0-2335 (1) & 3-5 (1) \\ N14 & 0-7920 (1) & 0-3656 (2) & 0-2635 (1) & 3-5 (1) \\ N24 & 0-7964 (1) & 0-4264 (2) & 0-2023 (1) & 4-0 (1) \\ N24 & 1-9252 (1) & 0-4027 (2) & 0-1948 (1) & 4-3 (1) \\ O24 & 1-1142 (1) & 0-2957 (2) & 0-2880 (1) & 4-9 (1) \\ C1B & 1-3262 (1) & 0-1406 (2) & 0-4572 (1) & 3-1 (1) \\ C2B & 1-23750 (2) & 0-0805 (2) & 0-5321 (1) & 3-6 (1) \\ C3B & 1-3372 (2) & -0-1593 (2) & 0-4767 (1) & 4-1 (1) \\ C5B & 1-3307 (2) & -0-0977 (3) & 0-4109 (1) & 4-4 (1) \\ C5B & 1-3307 (2) & -0-0977 (3) & 0-4109 (1) & 4-4 (1) \\ C5B & 1-3021 (2) & 0-545 (2) & 0-4003 (1) & 3-8 (1) \\ N1B & 1-1719 (1) & 0-3661 (2) & 0-4499 (1) & 3-1 (1) \\ N1B & 1-1719 (1) & 0-3661 (2) & 0-4499 (1) & 3-1 (1) \\ N1B & 1-1719 (1) & 0-3671 (2) & 0-4499 (1) & 3-1 (1) \\ O2B & 0-9470 (1) & 0-6275 (2) & 0-41177 (1) & 4-4 (1) \\ Compound (2) \\ S & 0-0283 (1) & 0-3751 (1) & 0.0874 (1) & 3-1 (1) \\ N1A & 0-0708 (2) & 0-2709 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0707 (2) & 0-1430 (2) & 0-2295 (2) & 4-3 (1) \\ O1A & -00757 (2) & 0-1430 (2) & 0-2295 (2) & 4-3 (1) \\ O1A & -00757 (2) & 0-1430 (2) & 0-2295 (2) & 4-3 (1) \\ O1A & -00757 (2) & 0-1430 (2) & 0-2295 (2) & 4-3 (1) \\ O2A & 0-0380 (2) & 0-2014 (3) & 0-3292 (2) & 2-9 (1) \\ N1A & 0-0310 (2) & 0-22678 (3) & 0.1591 (2) & 5-5 (2) \\ C3A & 0-3499 (2) & 0-2364 (3) & 0.3117 (2) & 3-5 (1) \\ O2A & 0-2366 (2) & 0-0731 (3) & 0.3148 (2) & 3-7 (2) \\ C4A & 0-3380 (2) & 0-2014 (3) & 0-3050 (2) & 2-9 (2) \\ C5A & 0-3494 (2) & 0.3286 (3) & 0.3117 (2) & 3-5 (1) \\ O3A & 0-5044 (2) & 0.3294 (3) & 0.3117 (2) & 3-5 (1) \\ O3A & 0-5044 (2) & 0.3394 (3) & 0.3117 (2) & 3-5 (1) \\ O2B & -0.0611 (2) & 0-3034 (1) & 0-2302 (2) & 2-9 (1) \\ N2B & 0-0817 (2) & 0-2365 (2) & 0-1135 (1) & 4-4 (1) \\ O2B & -0.0611 (2) & 0-3034 (1) & 0-2307 (2) & 3-7 (2) \\ C5B & 0-32414 (1) & 0-00335 (2) & 0-2376 (4) & 4-6 (2) \\ C5B & 0-3414 (1) & 0-0335 (2) & 0-2307 ($	C4A	0-4260 (2)	0.4090 (3)	0.3226(1)	4.9(1)
Cbd 0-5369 (2) 0-3135 (3) 0-241 (1) 3-9 (1) C74 0-9058 (1) 0-2990 (2) 0-2266 (1) 3-9 (1) C84 0-9986 (2) 0-3242 (2) 0-2533 (1) 3-0 (1) N14 0-7926 (1) 0-4565 (2) 0-2033 (1) 4-0 (1) O14 0-9252 (1) 0-4027 (2) 0-1948 (1) 4-3 (1) C1B 1-2362 (1) 0-4027 (2) 0-1948 (1) 4-1 (1) C1B 1-2362 (1) 0-4005 (2) 0-4572 (1) 3-1 (1) C2B 1-2362 (2) 0-0050 (2) 0-5231 (1) 3-6 (1) C3B 1-3307 (2) -0-0977 (3) 0-4109 (1) 4-1 (1) C5B 1-3307 (2) -0-0977 (3) 0-4109 (1) 4-1 (1) C6B 1-2619 (2) 0-0545 (2) 0-4003 (1) 3-8 (1) C7B 1-0482 (1) 0-3466 (2) 0-4767 (1) 3-5 (1) N1B 1-1719 (1) 0-3061 (2) 0-4479 (1) 3-1 (1) C2B 1-2402 (1) 0-4359 (2) 0-4489 (1) 3-1 (1) C2B 0-9470 (1) 0-6275 (2) 0-4181 (1) 2-9 (1) N1B 1-1564 (1) 0-5751 (2) 0-4649 (1) 4-3 (1) O2B 0-9470 (1) 0-6275 (2) 0-4117 (1) 4-4 (1) Compound (2) S 0-0283 (1) 0-3751 (1) 0-0874 (1) 3-1 (1) N24 0-0708 (2) 0-2079 (3) 0-1663 (2) 2-9 (1) N14 0-0708 (2) 0-2017 (2) 0-2466 (2) 3-1 (1) N24 0-0310 (2) 0-2078 (3) 0-1659 (2) 2-9 (1) N14 0-0708 (2) 0-2017 (3) 0-2392 (2) 4-3 8 (1) O24 -0-1883 (2) 0-2678 (3) 0-1591 (2) 3-9 (2) C44 0-3980 (2) 0-2014 (3) 0-2926 (2) 4-3 (1) D1A 0-0308 (2) 0-2014 (3) 0-2926 (2) 4-3 (1) N24 0-0310 (2) 0-2046 (3) 0-3348 (2) 3-7 (2) C44 0-3980 (2) 0-2044 (4) 0-3866 (2) 3-7 (2) C44 0-2361 (2) 0-1207 (3) 0-0197 (2) 3-9 (3) C1B 0-20258 (2) 0-1332 (3) 0-04097 (3) 3-6 (1) N2B 0-0053 (2) 0-07072 (3) 0-3148 (2) 3-7 (1) D2B -0-0153 (2) 0-07072 (3) 3-0107 (2) 3-7 (1) D2B -0-0163 (2) 0-07072 (2) 3-206 (2) 3-7 (1) D2B -0-0163 (2) 0-0208 (2) -0-0079 (3) 3-7 (1) D2B 0-0258 (1) 0-1034 (1) 0-2500 (3) 3-5 (1) D3B 0-5250 (1) 0-1034 (1) 0-2500 (3) 3-5 (1) D4 0-4035 (1) 0-2354 (2) 0-0058 (3) 3-4 (1)	C5A	0.4362(2)	0.3302(3)	0.2618(1)	4.8(1)
$\begin{array}{c ccccc} CAA & 0-9986 (2) & 0-2990 (2) & 0-2990 (1) & 2-911 \\ 2-811 \\ N1A & 0-9986 (2) & 0-3242 (2) & 0-2335 (1) & 3-5 (1) \\ N1A & 0-9926 (1) & 0-4264 (2) & 0-2033 (1) & 3-5 (1) \\ OLA & 0-9252 (1) & 0-4027 (2) & 0-1948 (1) & 4-3 (1) \\ OLA & 1-1142 (1) & 0-2957 (2) & 0-2380 (1) & 4-9 (1) \\ C1B & 1-2362 (1) & 0-4065 (2) & 0-4572 (1) & 3-1 (1) \\ C2B & 1-2350 (2) & 0-0805 (2) & 0-5231 (1) & 3-6 (1) \\ C3B & 1-3435 (2) & -0-077 (3) & 0-4109 (1) & 4-4 (1) \\ C5B & 1-2619 (2) & -0-0593 (2) & 0-4767 (1) & 4-1 (1) \\ C6B & 1-2619 (2) & -0.0545 (2) & 0-4003 (1) & 3-8 (1) \\ C7B & 1-0483 (1) & 0-3466 (2) & 0-4181 (1) & 2-9 (1) \\ N2B & 1-0342 (2) & 0-5246 (2) & 0-4206 (1) & 3-5 (1) \\ N1B & 1-1719 (1) & 0-3061 (2) & 0-4499 (1) & 3-1 (1) \\ N2B & 1-1564 (1) & 0-5751 (2) & 0-4449 (1) & 4-3 (1) \\ O2B & 0-9470 (1) & 0-6275 (2) & 0-4417 (1) & 4-4 (1) \\ Compound (2) \\ S & 0-0283 (1) & 0-3751 (1) & 0.0874 (1) & 3-1 (1) \\ N2A & 0.0310 (2) & 0-2396 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-07057 (2) & 0-1430 (2) & 0-2295 (2) & 4-38 (1) \\ O2A & -0-1883 (2) & 0-2578 (3) & 0-1059 (2) & 5-5 (2) \\ C1A & 0-03980 (2) & 0-2074 (3) & 0-3364 (2) & 4-02 (2) \\ C2A & 0-2366 (2) & 0-731 (3) & 0-3148 (2) & 3-7 (2) \\ C4A & 0-3389 (2) & 0-025 (3) & 0-3168 (2) & 3-7 (2) \\ C4A & 0-3389 (2) & 0-2284 (3) & 0-3159 (2) & 5-5 (2) \\ C5A & 0-2361 (2) & 0-3304 (3) & 0-3117 (2) & 3-5 (1) \\ O3A & 0-5044 (2) & 0.189 (13) & 0-4350 (2) & -0.013 (2) & -0.0049 (2) & 3-1 (1) \\ N2B & 0-0817 (2) & 0-3294 (3) & 0-3162 (5) & 0-4667 (3) & 6-9 (3) \\ C7B & 0-0222 (2) & 0-2490 (3) & 0-3162 (5) & 0-4115 (1) & 4-4 (1) \\ D2B & -0-1611 (2) & 0-1903 (3) & -0.0049 (2) & 3-1 (1) \\ D2B & -0.0161 (2) & 0-2395 (2) & 0-2306 (2) & 3-7 (2) \\ C3B & 0-3081 (2) & 0-3034 (1) & 0-2300 (3) & -0.0049 (2) & 3-1 (1) \\ D2B & -0.0161 (2) & 0-2394 (3) & 0-3162 (5) & 0-4067 (3) & 6-9 (3) \\ C3B & 0-3081 (2) & 0-3034 (1) & 0-2300 (3) & -0.0075 (2) & 3-7 (1) \\ D3B & 0-0025 (2) & 0-2000 (4) & 0-335 (2) & 0-0004 (4) & 3-35 (1) \\ C4B & 0-4224 (2) & 0-2395 (3) & 0-0005 (2) & 3-7 (2) \\ C5B & 0-3091 (1) & 0-1352 (2$	COA	0.3369(2)	0.3135(3)	0.2417(1)	3.9(1)
Carl 0.9780 (2) 0.2242 (2) 0.2233 (1) 3.0 (1) N14 0.7920 (1) 0.3556 (2) 0.2233 (1) 4.0 (1) O14 0.9252 (1) 0.405 (2) 0.2233 (1) 4.3 (1) O24 1.1142 (1) 0.2957 (2) 0.2380 (1) 4.9 (1) C18 1.2362 (1) 0.1406 (2) 0.4572 (1) 3.1 (1) C28 1.2350 (2) 0.0805 (2) 0.4572 (1) 3.6 (1) C38 1.3307 (2) -0.0977 (3) 0.4109 (1) 4.4 (1) C58 1.0310 (2) 0.0545 (2) 0.4403 (1) 3.8 (1) N1B 1.1719 (1) 0.3061 (2) 0.4493 (1) 3.5 (1) N1B 1.1719 (1) 0.3061 (2) 0.4493 (1) 3.1 (1) N2B 1.2602 (1) 0.4559 (2) 0.4493 (1) 3.1 (1) N2B 1.2602 (1) 0.4559 (2) 0.4493 (1) 3.1 (1) O2B 0.9470 (1) 0.6275 (2) 0.4117 (1) 4.4 (1) Compound (2) S 0.0283 (1) 0.3751 (1) 0.0874 (1) 3.1 (1) C74 0.0003 (2) 0.2709 (3) 0.1663 (2) 2.9 (1) N14 0.0708 (2) 0.2709 (3) 0.1663 (2) 2.9 (1) N14 0.0708 (2) 0.2217 (2) 0.2466 (2) 3.1 (1) O24 -0.1883 (2) 0.2578 (3) 0.1059 (2) 5.5 (2) C84 -0.0996 (2) 0.2362 (3) 0.1391 (2) 3.9 (2) C14 0.1843 (2) 0.2017 (3) 0.3314 (2) 3.7 (2) C34 0.3399 (2) 0.0275 (3) 0.3314 (2) 3.7 (2) C34 0.3399 (2) 0.0204 (4) 0.2396 (2) 3.3 (1) (2) 3.9 (2) C34 0.3499 (2) 0.2204 (3) 0.3017 (2) 3.5 (1) O34 0.5044 (2) 0.1891 (3) 0.3418 (2) 3.7 (2) C34 0.3499 (2) 0.2204 (3) 0.30147 (2) 3.5 (1) O34 0.5044 (2) 0.1391 (3) 0.3117 (2) 3.5 (1) O34 0.5044 (2) 0.1391 (3) 0.3117 (2) 3.5 (1) O34 0.5042 (2) 0.0324 (3) 0.3017 (2) 3.5 (1) D34 0.5044 (2) 0.1391 (3) 0.3117 (2) 3.5 (1) D34 0.5044 (2) 0.1391 (3) 0.3117 (2) 3.5 (1) D34 0.5044 (2) 0.1391 (3) 0.3117 (2) 3.5 (1) D34 0.5042 (2) 0.2294 (3) 0.3017 (2) 3.7 (2) C64 0.2361 (2) 0.03294 (3) 0.3017 (2) 3.7 (2) C64 0.2361 (2) 0.03294 (3) 0.3017 (2) 3.7 (2) C64 0.2361 (2) 0.03294 (3) 0.3017 (2) 3.5 (1) D18 0.4053 (2) 0.0003 (2) -0.0073 (2) 3.7 (2) C64 0.2414 (1) 0.1933 (2) 0.0006 (2) 3.7 (2) C10 0.9885 (2) 0.132 (4) 0.148 (2) 0.2300 (3) 5.0 (1) C38 0.3388 (2) 0.1337 (3) 0.0963 (2) 4.5 (2) C39 0.3088 (2) 0.00034 (1) 0.2250 (3) 5.5 (1) D38 0.3088 (2) 0.0004 (2) 0.1207 (4) 4.1 (2) C5 0.2888 0.3004 (3)	CIA CIA	0.9038(1)	0.2990(2) 0.3242(2)	0.2909(1) 0.2535(1)	2.9(1) 3.5(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N14	0.7920(2)	0.3656(2)	0.2635(1)	3.0(1)
$\begin{array}{ccccc} \hline 0.14 & 0.9252 (1) & 0.4027 (2) & 0.1948 (1) & 4.3 (1) \\ 02.4 & 1.1142 (1) & 0.2957 (2) & 0.2580 (1) & 4.9 (1) \\ C1B & 1.2362 (1) & 0.1406 (2) & 0.4572 (1) & 3.1 (1) \\ C2B & 1.2750 (2) & 0.0805 (2) & 0.5231 (1) & 3.6 (1) \\ C3B & 1.3435 (2) & -0.0771 (3) & 0.4109 (1) & 4.4 (1) \\ C4B & 1.3722 (2) & -0.1593 (2) & 0.4767 (1) & 4.1 (1) \\ C5B & 1.307 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.307 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C7B & 1.0483 (1) & 0.3466 (2) & 0.44181 (1) & 2.9 (1) \\ C8B & 1.042 (2) & 0.524 (2) & 0.4276 (1) & 3.5 (1) \\ N1B & 1.1719 (1) & 0.3061 (2) & 0.4276 (1) & 3.5 (1) \\ N2B & 1.2402 (1) & 0.4359 (2) & 0.4489 (1) & 3.1 (1) \\ N2B & 1.2602 (1) & 0.4359 (2) & 0.4489 (1) & 4.3 (1) \\ O2B & 0.9470 (1) & 0.6275 (2) & 0.4117 (1) & 4.4 (1) \\ \hline Compound (2) \\ S & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3.1 (1) \\ N24 & 0.0310 (2) & 0.2017 (2) & 0.2466 (2) & 3.1 (1) \\ N24 & 0.0310 (2) & 0.2017 (2) & 0.2266 (2) & 4.3 (1) \\ N14 & 0.0708 (2) & 0.2017 (2) & 0.2395 (2) & 4.8 (1) \\ O24 & -0.1883 (2) & 0.2678 (3) & 0.1591 (2) & 3.9 (2) \\ C14 & 0.1843 (2) & 0.0214 (3) & 0.2902 (2) & 2.9 (1) \\ C34 & 0.3380 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ C44 & 0.3980 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ C44 & 0.3980 (2) & 0.0725 (3) & 0.3636 (2) & 3.7 (2) \\ C54 & 0.2361 (2) & 0.3128 (3) & 0.3117 (2) & 3.5 (1) \\ O34 & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.0222 (2) & 0.2490 (3) & -0.0192 (2) & 2.9 (1) \\ C2B & 0.2051 (2) & 0.1820 (3) & -0.0788 (2) & 3.0 (1) \\ C2B & 0.0617 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ O1B & -0.0228 (2) & 0.0725 (3) & 0.3606 (2) & 3.7 (1) \\ D2B & -0.0611 (2) & 0.1903 (3) & -0.0049 (2) & 3.1 (1) \\ D2B & -0.0611 (2) & 0.1903 (3) & -0.0049 (2) & 3.1 (1) \\ D2B & -0.0611 (2) & 0.1903 (3) & -0.0048 (2) & 3.0 (1) \\ C2B & 0.2350 (1) & 0.1320 (3) & -0.0158 (2) & 4.0 (2) \\ C54 & 0.2341 (4) & 0.2352 (3) & 0.0258 (2) & 3.0 (1) \\ C3B & 0.3280 (2) & 0.0033 (1) & 0.2500 & 3.5 (1) \\ C3B & 0.5243 (2) & 0.1337 (3) & 0.1898 (2) & 5.6 (2) \\ C44 & 0.2414 (1) & 0.0335 (2$	N24	0.7964(1)	0.4264(2)	0.2023(1)	4.0(1)
$\begin{array}{ccccc} \hline 0.24 & 1-1142 (1) & 0-2957 (2) & 0-2580 (1) & 4-9 (1) \\ C1B & 1-2362 (1) & 0-1406 (2) & 0.4572 (1) & 3-1 (1) \\ C3B & 1-3435 (2) & -0.0805 (2) & 0.5231 (1) & 3-6 (1) \\ C3B & 1-3435 (2) & -0.0721 (3) & 0.5322 (1) & 4-1 (1) \\ C5B & 1-307 (2) & -0.0977 (3) & 0.4109 (1) & 4-4 (1) \\ C5B & 1-2619 (2) & 0.0545 (2) & 0.4003 (1) & 3-8 (1) \\ C7B & 1-0442 (2) & 0.5246 (2) & 0.4216 (1) & 3-1 (1) \\ C8B & 1-0342 (2) & 0.5246 (2) & 0.4216 (1) & 3-1 (1) \\ N1B & 1-1719 (1) & 0.3061 (2) & 0.4496 (1) & 4-3 (1) \\ 01B & 1-1546 (1) & 0.5751 (2) & 0.4649 (1) & 4-3 (1) \\ 02B & 0.9470 (1) & 0.6275 (2) & 0.4117 (1) & 4-4 (1) \\ \hline Compound (2) \\ S & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3-1 (1) \\ C7A & 0.0003 (2) & 0.2709 (3) & 0.1663 (2) & 2-9 (1) \\ N1A & 0.0708 (2) & 0.2117 (2) & 0.2466 (2) & 3-1 (1) \\ N2A & 0.0310 (2) & 0.1239 (3) & 0.2926 (2) & 4-38 (1) \\ 02A & -0.0986 (2) & 0.2617 (3) & 0.1059 (2) & 5-5 (2) \\ C8A & -0.0996 (2) & 0.2261 (3) & 0.1059 (2) & 5-5 (2) \\ C4A & 0.3980 (2) & 0.2014 (3) & 0.2902 (2) & 2-9 (1) \\ C2A & 0.2366 (2) & 0.0731 (3) & 0.3148 (2) & 3-7 (2) \\ C5A & 0.348 (2) & 0.2004 (4) & 0.3866 (2) & 3-7 (2) \\ C5A & 0.349 (2) & 0.3294 (3) & 0.3117 (2) & 3-5 (1) \\ 03A & 0.5044 (2) & 0.3294 (3) & 0.3117 (2) & 3-5 (1) \\ 03A & 0.5044 (2) & 0.3294 (3) & 0.3117 (2) & 3-5 (1) \\ 03A & 0.5044 (2) & 0.3294 (3) & 0.3117 (2) & 3-5 (1) \\ 03B & -0.0228 (2) & 0.0416 (3) & -0.0705 (2) & 3-7 (2) \\ C5B & 0.0517 (2) & 0.0432 (3) & -0.0705 (2) & 3-7 (2) \\ C5B & 0.0518 (2) & 0.193 (2) & -0.0193 (2) & -0.0193 (2) & -0.019 (2) & -2.8 (1) \\ N1B & 0.0103 (2) & 0.193 (2) & -0.0049 (2) & 3-1 (1) \\ 02B & -0.0679 (2) & 0.1820 (3) & -0.0705 (2) & 3-7 (2) \\ C3B & 0.328 (2) & 0.1312 (2) & -0.0135 (1) & -0.0705 (2) & 3-7 (1) \\ 02B & -0.0679 (2) & 0.1323 (3) & -0.0705 (2) & 3-7 (1) \\ 03B & 0.5243 (2) & 0.1337 (3) & 0.1985 (2) & 5-6 (2) \\ C5B & 0.3213 (2) & 0.148 (2) & 0.2306 (2) & 3-7 (1) \\ 03B & 0.5243 (2) & 0.0337 (3) & 0.1985 (2) & 5-6 (2) \\ C5B & 0.0513 (1) & 0.0334 (1) & 0.2500 & 3.55 (1) \\ C1 & 0.328 (2) & 0.0334 (1) & 0.2503 (3) & -$	014	0.9252(1)	0.4027 (2)	0.1948(1)	4.3(1)
	02 <i>A</i>	1.1142(1)	0.2957 (2)	0.2580(1)	4.9(1)
$\begin{array}{ccccc} 228 & 1.2750 (2) & 0.0805 (2) & 0.5221 (1) & 3.6 (1) \\ C3B & 1.3435 (2) & -0.0721 (3) & 0.5322 (1) & 4.1 (1) \\ C5B & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.3307 (2) & -0.0977 (3) & 0.4109 (1) & 4.4 (1) \\ C5B & 1.0342 (2) & 0.5246 (2) & 0.4205 (1) & 3.8 (1) \\ C7B & 1.0483 (1) & 0.3466 (2) & 0.44181 (1) & 2.9 (1) \\ C8B & 1.0342 (2) & 0.5246 (2) & 0.4276 (1) & 3.5 (1) \\ N1B & 1.1719 (1) & 0.3061 (2) & 0.4490 (1) & 3.1 (1) \\ N2B & 1.2402 (1) & 0.4359 (2) & 0.4785 (1) & 4.2 (1) \\ O2B & 0.9470 (1) & 0.5751 (2) & 0.4649 (1) & 4.3 (1) \\ O2B & 0.9470 (1) & 0.5751 (2) & 0.4619 (1) & 4.3 (1) \\ O2B & 0.9470 (1) & 0.6275 (2) & 0.4117 (1) & 4.4 (1) \\ \hline Compound (2) \\ S & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3.1 (1) \\ N2A & 0.0310 (2) & 0.2107 (2) & 0.2466 (2) & 3.1 (1) \\ N2A & 0.0310 (2) & 0.2139 (3) & 0.2926 (2) & 4.8 (1) \\ O2A & -0.1883 (2) & 0.2678 (3) & 0.1059 (2) & 5.5 (2) \\ C8A & -0.0996 (2) & 0.2362 (3) & 0.1591 (2) & 3.9 (2) \\ C1A & 0.3439 (2) & 0.0725 (3) & 0.6364 (2) & 4.0 (2) \\ C4A & 0.3800 (2) & 0.2004 (4) & 0.3866 (2) & 3.8 (2) \\ C5A & 0.3449 (2) & 0.3284 (3) & 0.3017 (2) & 5.6 (1) \\ C9A & 0.5642 (3) & 0.3191 (3) & 0.3148 (2) & 3.7 (2) \\ C5A & 0.3449 (2) & 0.3284 (3) & 0.3060 (2) & 3.7 (2) \\ C5A & 0.3449 (2) & 0.3284 (3) & 0.3016 (2) & 3.7 (2) \\ C5A & 0.3449 (2) & 0.3284 (3) & 0.3017 (2) & 5.6 (1) \\ C9A & 0.5642 (3) & 0.3162 (2) & -0.0135 (1) & 4.4 (1) \\ D2B & -0.053 (2) & 0.0913 (2) & -0.0949 (2) & 3.1 (1) \\ N1B & 0.1053 (2) & 0.0916 (3) & -0.07987 (2) & 5.6 (1) \\ C1B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ D2B & -0.0611 (2) & 0.1930 (2) & -0.0498 (2) & 3.7 (1) \\ C3B & 0.5642 (3) & 0.337 (3) & 0.1985 (2) & 5.6 (2) \\ C3B & 0.5885 (1) & -0.1933 (2) & -0.0498 (2) & 3.7 (1) \\ C3B & 0.5283 (2) & 0.1332 (4) & 0.1534 (4) & 0.455 (2) \\ C6B & 0.2470 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C5B & 0.5200 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.320 (1) & 0.1247 (2) & 0.1819 (4) & 4.5 (2) \\ C5B & 0.5200 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.4635 (1) & 0.2234 (2) & -0.0944 (2$	C1B	1.2362 (1)	0-1406 (2)	0.4572 (1)	3-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2B	1.2750 (2)	0.0805 (2)	0.5231(1)	3.6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3 <i>B</i>	1.3435 (2)	-0.0721 (3)	0.5322(1)	4.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4B	1.3722 (2)	-0.1593 (2)	0.4767 (1)	4.1(1)
$\begin{array}{ccccc} C6B & 1-2619(2) & 0-0346(2) & 0-4003(1) & 3-8(1) \\ C7B & 1-0432(2) & 0-3466(2) & 0-4181(1) & 2-9(1) \\ C8B & 1-0342(2) & 0-5246(2) & 0-4276(1) & 3-5(1) \\ N1B & 1-1719(1) & 0-3061(2) & 0-4490(1) & 3-1(1) \\ N2B & 1-2402(1) & 0-4359(2) & 0-4785(1) & 4-2(1) \\ O1B & 1-1564(1) & 0-5751(2) & 0-4649(1) & 4-3(1) \\ O2B & 0-9470(1) & 0-6275(2) & 0-4117(1) & 4-4(1) \\ C7A & 0.0003(2) & 0-2709(3) & 0-1663(2) & 2-9(1) \\ N1A & 0-0708(2) & 0-217(2) & 0-2466(2) & 3-1(1) \\ N2A & 0-0310(2) & 0-2395(3) & 0-2926(2) & 4-3(1) \\ O2A & -0.0757(2) & 0-1430(2) & 0-2395(2) & 4-8(1) \\ O2A & -0.083(2) & 0-2678(3) & 0-1059(2) & 5-5(2) \\ C8A & -0.0996(2) & 0-2362(3) & 0-1591(2) & 3-9(2) \\ C1A & 0.1843(2) & 0-2014(3) & 0-3902(2) & 2-9(1) \\ C2A & 0-2366(2) & 0-0731(3) & 0-3148(2) & 3-7(2) \\ C3A & 0-3439(2) & 0-0725(3) & 0-3634(2) & 4-0(2) \\ C4A & 0-3980(2) & 0-2004(4) & 0-3866(2) & 3-8(2) \\ C5A & 0-3449(2) & 0-3286(3) & 0-3606(2) & 3-7(2) \\ C6A & 0-2361(2) & 0-3294(3) & 0-3117(2) & 3-5(1) \\ O3A & 0-5044(2) & 0-1891(3) & -0-0498(2) & 5-0(1) \\ C9A & 0-5042(3) & 0-3162(5) & 0-4667(3) & 6-9(3) \\ C7B & 0-0222(2) & 0-2490(3) & -0-0798(2) & 4-2(1) \\ O1B & -0-0238(2) & 0-0816(2) & -0-0798(2) & 4-2(1) \\ O1B & -0-0238(2) & 0-0816(3) & -0-0798(2) & 4-2(1) \\ O1B & -0-0238(2) & 0-0816(3) & -0-0798(2) & 4-2(1) \\ O1B & -0-0238(2) & 0-0816(3) & -0-0798(2) & 3-1(1) \\ N2B & 0.0817(2) & 0-916(3) & -0-0788(2) & 3-0(1) \\ C2B & 0-3816(2) & 0-1325(3) & -00705(2) & 3-7(2) \\ C4B & 0-2419(2) & 0-2256(3) & 0-1037(2) & 3-9(2) \\ C3B & 0-3885(2) & 0-1325(4) & 0-1534(2) & 4-1(2) \\ C5B & 0-3518(3) & 0-3946(3) & 0-0963(2) & 4-5(2) \\ C5B & 0-23518(3) & 0-3946(3) & 0-0963(2) & 4-5(2) \\ C5B & 0-2358(1) & -0-0044(2) & 0-1819(4) & 4-5(2) \\ C5B & 0-3518(3) & 0-3946(3) & 0-0963(2) & 4-5(2) \\ C5B & 0-3518(3) & 0-3946(3) & 0-0963(2) & 4-5(2) \\ C5B & 0-2358(1) & -0-0040(2) & 0-1819(4) & 4-5(2) \\ C5 & 0-2858(1) & -0-0040(2) & 0-1819(4) & 4-5(2) \\ C5 & 0-2858(1) & -0-0040(2) & 0-1819(4) & 4-5(2) \\ C5 & 0-2858(1) & -0-00404(2) & 0-1819(4) & 4-5(2) \\ C5 & 0-3518(3) & 0-2350(3) & -3$	C5B	1.3307 (2)	-0.0977 (3)	0.4109(1)	4.4(1)
$\begin{array}{cccccc} C/B & 1-0483 (1) & 0-3400 (2) & 0-4181 (1) & 2-9 (1) \\ C8B & 1-0483 (2) & 0-5246 (2) & 0-4276 (1) & 3-5 (1) \\ N1B & 1-1719 (1) & 0-3061 (2) & 0-4499 (1) & 3-1 (1) \\ N2B & 1-2402 (1) & 0-4359 (2) & 0-4785 (1) & 4-2 (1) \\ O1B & 1-1564 (1) & 0-5751 (2) & 0-4649 (1) & 4-3 (1) \\ O2B & 0-9470 (1) & 0-6275 (2) & 0-4117 (1) & 4-4 (1) \\ Compound (2) \\ S & 0-0283 (1) & 0-3751 (1) & 0-0874 (1) & 3-1 (1) \\ C7A & 0-0003 (2) & 0-2709 (3) & 0-1663 (2) & 2-9 (1) \\ N1A & 0-0708 (2) & 0-2017 (2) & 0-2466 (2) & 3-1 (1) \\ N2A & 0-0310 (2) & 0-1239 (3) & 0-2926 (2) & 4-3 (1) \\ O1A & -0-0757 (2) & 0-1430 (2) & 0-2395 (2) & 4-88 (1) \\ O2A & -0-1883 (2) & 0-2678 (3) & 0-1059 (2) & 5-5 (2) \\ C8A & -0-0996 (2) & 0-2362 (3) & 0-1591 (2) & 3-9 (2) \\ C1A & 0-1843 (2) & 0-2014 (3) & 0-2902 (2) & 2-9 (1) \\ C2A & 0-2366 (2) & 0-0731 (3) & 0-3448 (2) & 3-7 (2) \\ C3A & 0-3439 (2) & 0-0725 (3) & 0-3634 (2) & 4-0 (2) \\ C5A & 0-3449 (2) & 0-3286 (3) & 0-3606 (2) & 3-7 (2) \\ C6A & 0-2361 (2) & 0-3294 (3) & 0-3117 (2) & 3-5 (1) \\ O3A & 0-5044 (2) & 0-1891 (3) & 0-4350 (2) & 3-0 (1) \\ C9A & 0-5642 (3) & 0-3162 (5) & 0-4667 (3) & 6-9 (3) \\ C7B & 0-0232 (2) & 0-2490 (3) & -00798 (2) & 3-1 (1) \\ N2B & 0-0817 (2) & 0-0916 (3) & -0-0728 (2) & 4-2 (1) \\ O2B & -0-1611 (2) & 0-1903 (2) & -0-0049 (2) & 3-1 (1) \\ N2B & 0-0817 (2) & 0-0812 (3) & -00705 (2) & 3-7 (2) \\ C3B & 0-3885 (2) & 0-1532 (4) & 0-1534 (2) & 4-1 (2) \\ C5B & 0-3518 (3) & 0-3346 (3) & 0-0685 (2) & 3-7 (1) \\ C3B & 0-5243 (2) & 0-3337 (3) & 0-1985 (2) & 5-6 (2) \\ C9B & 0-6034 (3) & 0-2288 (5) & 0-2450 (3) & 6-9 (3) \\ Compound (3) \\ S \\ Compound (3) \\ S \\ Compound (3) \\ S \\ Compound (3) \\ C \\ C \\ C \\ C \\ C \\ O \\ 0 \\ C \\ C \\ C \\ O \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	C6B	1.2619 (2)	0.0545(2)	0.4003(1)	3.8(1)
$\begin{array}{cccc} Colored Colo$	C/B	1.0483 (1)	0.3400(2)	0.4181(1) 0.4276(1)	2.9(1) 3.5(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NIP	1.0342(2)	0.3240(2)	0.4490 (1)	3.1(1)
$\begin{array}{ccccc} 122 & 0.1264 (1) & 0.5751 (2) & 0.4649 (1) & 4.3 (1) \\ 02B & 0.9470 (1) & 0.6275 (2) & 0.4117 (1) & 4.4 (1) \\ \hline \\ Compound (2) \\ S & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3.1 (1) \\ C7A & 0.0003 (2) & 0.2709 (3) & 0.1663 (2) & 2.9 (1) \\ N1A & 0.0708 (2) & 0.2017 (2) & 0.2466 (2) & 3.1 (1) \\ N2A & 0.0310 (2) & 0.1239 (3) & 0.2926 (2) & 4.3 (1) \\ 01A & -0.0757 (2) & 0.1430 (2) & 0.2395 (2) & 4.8 (1) \\ 02A & -0.1883 (2) & 0.2678 (3) & 0.1059 (2) & 5.5 (2) \\ C8A & -0.0996 (2) & 0.2362 (3) & 0.1591 (2) & 3.9 (2) \\ C1A & 0.1843 (2) & 0.2014 (3) & 0.2902 (2) & 2.9 (1) \\ C2A & 0.2366 (2) & 0.0731 (3) & 0.3148 (2) & 3.7 (2) \\ C3A & 0.3439 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ C4A & 0.3980 (2) & 0.2024 (3) & 0.3106 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ 03A & 0.5044 (2) & 0.1891 (3) & -0.0987 (2) & 5.0 (1) \\ C9A & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.0222 (2) & 0.2490 (3) & -0.0078 (2) & 4.2 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.00987 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ 01B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ 02B & -0.1611 (2) & 0.1900 (3) & -0.07987 (2) & 5.0 (1) \\ C3B & 0.0817 (2) & 0.1205 (3) & 0.0508 (2) & 3.0 (1) \\ C2B & 0.0817 (2) & 0.1205 (3) & -0.0705 (2) & 3.7 (2) \\ C1B & 0.2149 (2) & 0.2256 (3) & 0.0508 (2) & 3.0 (1) \\ 02B & 0.0815 (2) & 0.1352 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.289 (3) & 0.0466 (2) & 3.7 (1) \\ 03B & 0.5233 (2) & 0.1337 (3) & 0.1985 (2) & 5.6 (2) \\ C3B & 0.3855 (2) & 0.1352 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.2450 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1424 (2) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.2450 (3) & 0.3373 (3) & 0.1985 (2) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0040 (2) & 0.1207 (4) & 4.6 (2) \\ C2 & 0.3091 (1) & 0.1224 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0$	N7R	1.2402 (1)	0.4359(2)	0.4785(1)	4.2(1)
O2B 0.9470 (1) 0.6275 (2) 0.4117 (1) 4.4 (1)Compound (2)S 0.0283 (1) 0.3751 (1) 0.0874 (1) 3.1 (1)C7A 0.0003 (2) 0.2709 (3) 0.1663 (2) 2.9 (1)N1A 0.0708 (2) 0.2017 (2) 0.2466 (2) 3.1 (1)OLA -0.0757 (2) 0.1430 (2) 0.2395 (2) 4.8 (1)O2A -0.01833 (2) 0.2678 (3) 0.1059 (2) 5.5 (2)C8A -0.0996 (2) 0.2362 (3) 0.1591 (2) 3.9 (2)C1A 0.1843 (2) 0.2014 (3) 0.2902 (2) 2.9 (1)C2A 0.233980 (2) 0.2004 (4) 0.3866 (2) 3.9 (2)C4A 0.33980 (2) 0.2004 (4) 0.3866 (2) 3.8 (2)C5A 0.3439 (2) 0.2004 (4) 0.3866 (2) 3.7 (2)C6A 0.2361 (2) 0.3294 (3) 0.3117 (2) 3.5 (1)O3A 0.5044 (2) 0.1891 (3) 0.4350 (2) 5.0 (1)C7B 0.0222 (2) 0.2490 (3) 0.0019 (2) 2.8 (1)N1B 0.1053 (2) 0.916 (3) -0.0728 (2) 4.2 (1)O1B -0.0581 (2) 0.9116 (3) -0.0705 (2) 3.7 (2)C7B 0.02258 (2) 0.1903 (2) -0.0049 (2) 3.111 (1)N2B 0.0817 (2) 0.919 (3) -0.0705 (2) 3.7 (1)O2B -0.0679 (2) 0.820 (3) -0.0705 (2) 3.7 (1)D2B 0.0817 (2) 0.9193 (2) <td>O1B</td> <td>1.1564(1)</td> <td>0.5751(2)</td> <td>0.4649(1)</td> <td>$4 \cdot 3(1)$</td>	O1B	1.1564(1)	0.5751(2)	0.4649(1)	$4 \cdot 3(1)$
Compound (2) S 0-283 (1) 0-3751 (1) 0-0874 (1) 3-1 (1) N1A 0-0708 (2) 0-2709 (3) 0-1663 (2) 2-9 (1) N1A 0-0708 (2) 0-219 (3) 0-2926 (2) 4-3 (1) N2A 0-0310 (2) 0-1239 (3) 0-2926 (2) 4-3 (1) O1A -0-0757 (2) 0-1430 (2) 0-2395 (2) 4-8 (1) O2A -0-1883 (2) 0-2678 (3) 0-1059 (2) 5-5 (2) C8A -0-0996 (2) 0-2362 (3) 0-1591 (2) 3-9 (2) C1A 0-1843 (2) 0-2014 (3) 0-2902 (2) 2-9 (1) C2A 0-2366 (2) 0-0731 (3) 0-3148 (2) 3-7 (2) C3A 0-3439 (2) 0-0725 (3) 0-3634 (2) 4-0 (2) C4A 0-3380 (2) 0-0204 (4) 0-3866 (2) 3-7 (2) C4A 0-3489 (2) 0-3286 (3) 0-3606 (2) 3-7 (2) C6A 0-2361 (2) 0-3294 (3) 0-3117 (2) 3-5 (1) O3A 0-5044 (2) 0-1891 (3) 0-4350 (2) 3-7 (2) C6A 0-2361 (2) 0-3294 (3) 0-3117 (2) 3-5 (1) O3A 0-5044 (2) 0-1891 (3) 0-4350 (2) 2-0 (1) C7B 0-0222 (2) 0-2490 (3) 0-0019 (2) 2-8 (1) N1B 0-1053 (2) 0-1903 (2) -0-0049 (2) 3-1 (1) N2B 0-0817 (2) 0-0916 (3) -0-0728 (2) 4-2 (1) O1B -0-0258 (2) 0-0812 (2) -0-1135 (1) 4-4 (1) O2B -0-0611 (2) 0-1900 (3) -0-0977 (2) 3-7 (2) C1B 0-2149 (2) 0-2256 (3) 0-0508 (2) 3-0 (1) C2B 0-2836 (2) 0-1205 (3) 0-1027 (2) 3-9 (2) C3B 0-3885 (2) 0-1322 (4) 0-1544 (2) 4-1 (2) C4B 0-4224 (2) 0-2899 (4) 0-1504 (2) 4-1 (2) C4B 0-32520 (1) 0-1074 (2) 0-1353 (3) 3-4 (1) C2 0-3091 (1) 0-1824 (2) 0-2302 (4) 4-8 (2) C4 0-2318 (3) 0-3946 (3) 0-0963 (2) 4-5 (2) C6 0-3314 (1) -0-0040 (2) 0-1207 (4) 4-6 (2) C3 0-2353 (2) 0-1448 (2) 0-2302 (4) 4-8 (2) C4 0-2414 (1) 0-0335 (2) 0-2376 (4) 4-0 (2) C5 0-2858 (1) -0-0404 (2) 0-1819 (4) 4-5 (2) C6 0-3314 (1) 0-1933 (2) 0-0406 (4) 3-8 (2) C7 0-4727 (1) 0-1247 (2) 0-0970 (3) 3-1 (1) C9 0-1403 (2) 0-0605 (3) 0-3354 (4) 5-6 (2) C9 0-1403 (2) 0-0605 (3) 0-3354 (4) 5-6 (2) C10 0-0840 (2) -0-0080 (3) 0-3893 (5) 8-1 (3) N1 0-4098 (1) 0-1933 (2) -0-0042 (2) 4-8 (1) O2 0-5671 (1) 0-2096 (2) -0-0099 (3) 5-3 (1) O3 0-1879 (1) -0-0123 (2) 0-2945 (3) 5-2 (2)	O2B	0.9470(1)	0.6275(2)	0.4117(1)	4.4(1)
$\begin{array}{c} \mbox{Compound (2)} \\ \mbox{S} & 0.0283 (1) & 0.3751 (1) & 0.0874 (1) & 3.1 (1) \\ \mbox{C7A} & 0.0003 (2) & 0.2709 (3) & 0.1663 (2) & 2.9 (1) \\ \mbox{N1A} & 0.0708 (2) & 0.2017 (2) & 0.2466 (2) & 3.1 (1) \\ \mbox{N2A} & 0.0310 (2) & 0.1239 (3) & 0.2926 (2) & 4.3 (1) \\ \mbox{O1A} & -0.0757 (2) & 0.1430 (2) & 0.2395 (2) & 4.8 (1) \\ \mbox{O2A} & -0.1883 (2) & 0.2678 (3) & 0.1059 (2) & 5.5 (2) \\ \mbox{C8A} & -0.0996 (2) & 0.2362 (3) & 0.1591 (2) & 3.9 (2) \\ \mbox{C1A} & 0.1883 (2) & 0.2014 (3) & 0.2902 (2) & 2.9 (1) \\ \mbox{C2A} & 0.2366 (2) & 0.0731 (3) & 0.3148 (2) & 3.7 (2) \\ \mbox{C3A} & 0.3498 (2) & 0.2024 (4) & 0.3866 (2) & 3.7 (2) \\ \mbox{C4A} & 0.3380 (2) & 0.2004 (4) & 0.3866 (2) & 3.7 (2) \\ \mbox{C4A} & 0.3980 (2) & 0.2326 (3) & 0.3606 (2) & 3.7 (2) \\ \mbox{C4A} & 0.3980 (2) & 0.2004 (4) & 0.3866 (2) & 3.7 (2) \\ \mbox{C5A} & 0.3449 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ \mbox{C6A} & 0.2361 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ \mbox{O3A} & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ \mbox{C9A} & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ \mbox{C7B} & 0.0222 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ \mbox{N1B} & 0.1053 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ \mbox{O1B} & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ \mbox{O2B} & -0.0611 (2) & 0.1903 (2) & -0.0498 (2) & 3.1 (1) \\ \mbox{C4B} & 0.4224 (2) & 0.289 (4) & 0.1504 (2) & 4.1 (2) \\ \mbox{C4B} & 0.4224 (2) & 0.289 (4) & 0.1504 (2) & 4.1 (2) \\ \mbox{C4B} & 0.4224 (2) & 0.289 (4) & 0.1504 (2) & 4.1 (2) \\ \mbox{C4B} & 0.4224 (2) & 0.289 (4) & 0.1504 (2) & 4.1 (2) \\ \mbox{C4B} & 0.4224 (2) & 0.289 (4) & 0.1504 (2) & 4.1 (2) \\ \mbox{C4B} & 0.4224 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (1) \\ \mbox{C3B} & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ \mbox{C1} & 0.3520 (1) & 0.1027 (2) & 0.351 (4) & 4.6 (2) \\ \mbox{C3B} & 0.5233 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ \mbox{C4B} & 0.4241 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ \mbox{C5B} & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ \mbox{C4B} & 0.4241 (1) & 0.0335 (2) & 0.2376 (4) $	010	0) 0 (1)	0 0210 (2)		(-,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound (2)		/		
$\begin{array}{ccccc} C7A & 0.0003 (2) & 0.2709 (3) & 0.1663 (2) & 2.9 (1) \\ N1A & 0.0708 (2) & 0.2017 (2) & 0.2466 (2) & 3.1 (1) \\ 01A & -0.0757 (2) & 0.1430 (2) & 0.2395 (2) & 4.8 (1) \\ 02A & -0.1883 (2) & 0.2678 (3) & 0.1059 (2) & 5.5 (2) \\ C8A & -0.0996 (2) & 0.2362 (3) & 0.1591 (2) & 3.9 (2) \\ C1A & 0.1843 (2) & 0.2014 (3) & 0.2902 (2) & 2.9 (1) \\ C2A & 0.2366 (2) & 0.0731 (3) & 0.3148 (2) & 3.7 (2) \\ C3A & 0.3439 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ C4A & 0.3980 (2) & 0.2024 (3) & 0.3666 (2) & 3.8 (2) \\ C5A & 0.3449 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3284 (3) & 0.3117 (2) & 3.5 (1) \\ 03A & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ C9A & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.0222 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ 01B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ 02B & -0.6179 (2) & 0.1820 (3) & -0.07087 (2) & 5.0 (1) \\ C3B & 0.3855 (2) & 0.1532 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2256 (3) & 0.0508 (2) & 3.7 (1) \\ C3B & 0.3855 (2) & 0.1532 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.3518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ \hline Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ C5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3314 (1) & -0.0040 (2) & 0.1207 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & -0.0340 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0605 (3) & 0.3534 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3$	S	0.0283 (1)	0-3751(1)	0.0874 (1)	3.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7A	0.0003(2)	0.2709 (3)	0.1663(2)	2.9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NIA	0.0708 (2)	0.2017(2)	0.2466(2)	$3 \cdot 1(1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NZA OLA	0.0310(2)	0.1239(3)	0.2920(2) 0.2305(2)	4.8(1)
$\begin{array}{ccccc} 0.103 (2) & 0.236 (3) & 0.1591 (2) & 3.9 (2) \\ 0.236 (3) & 0.1591 (2) & 3.9 (2) \\ 0.24 & 0.236 (2) & 0.0731 (3) & 0.3148 (2) & 3.7 (2) \\ 0.34 & 0.3439 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ 0.386 (2) & 3.86 (2) & 0.3634 (2) & 4.0 (2) \\ 0.34 & 0.3439 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ 0.34 & 0.5044 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ 0.34 & 0.5044 (2) & 0.3286 (3) & 0.4667 (3) & 6.9 (3) \\ 0.34 & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ 0.34 & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ 0.94 & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ 0.7B & 0.0222 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ 0.1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ 0.2B & -0.6817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ 0.2B & -0.1611 (2) & 0.1900 (3) & -0.0987 (2) & 5.0 (1) \\ 0.2B & -0.0679 (2) & 0.1820 (3) & -0.0708 (2) & 3.7 (2) \\ 0.1B & 0.2124 (2) & 0.2256 (3) & 0.0508 (2) & 3.7 (1) \\ 0.2B & 0.2836 (2) & 0.1205 (3) & 0.1027 (2) & 3.9 (2) \\ 0.3B & 0.3885 (2) & 0.1532 (4) & 0.1504 (2) & 4.1 (2) \\ 0.5B & 0.43518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ 0.3B & 0.32518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ 0.3B & 0.5233 (2) & 0.1334 (1) & 0.2500 & 3.5 (1) \\ 0.3B & 0.5233 (2) & 0.1344 (2) & 0.2150 (3) & 6.9 (3) \\ \hline Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2302 (4) & 4.8 (2) \\ 0.46 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ 0.5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) &$	024	-0.1883(2)	0.2678(3)	0.1059(2)	5.5(2)
$\begin{array}{cccccc} C1A & 0.1843 (2) & 0.2014 (3) & 0.2902 (2) & 2.9 (1) \\ C2A & 0.2366 (2) & 0.0731 (3) & 0.3148 (2) & 3.7 (2) \\ C3A & 0.3439 (2) & 0.0725 (3) & 0.3634 (2) & 4.0 (2) \\ C4A & 0.3980 (2) & 0.2004 (4) & 0.3866 (2) & 3.8 (2) \\ C5A & 0.3449 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ C3A & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ C9A & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.022 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ O1B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ O2B & -0.1611 (2) & 0.1900 (3) & -0.0977 (2) & 3.7 (2) \\ C1B & 0.2149 (2) & 0.2256 (3) & 0.0508 (2) & 3.0 (1) \\ C2B & 0.2836 (2) & 0.1205 (3) & 0.1027 (2) & 3.9 (2) \\ C3B & 0.3885 (2) & 0.1322 (4) & 0.1544 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (3) & 0.0466 (2) & 3.7 (1) \\ O3B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C6B & 0.2470 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C3B & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1284 (2) & 0.2302 (4) & 4.8 (2) \\ C4 & 0.22414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2838 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.6 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.103 (2) & 0.0605 (3) & 0.3384 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1931 (2) & -0.0970 (3) & 3.4 (1) \\ C9 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -0.2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -0.2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -0.2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -0.2945 (3) & 5.3 (1) \\ O3$	C84	-0.0996(2)	0.2362(3)	0.1591(2)	3.9(2)
$\begin{array}{ccccc} C2A & 0.2366(2) & 0.0731(3) & 0.3148(2) & 3.7(2) \\ C3A & 0.3439(2) & 0.0725(3) & 0.3634(2) & 4.0(2) \\ C4A & 0.3980(2) & 0.2004(4) & 0.3866(2) & 3.8(2) \\ C5A & 0.3449(2) & 0.3286(3) & 0.3606(2) & 3.7(2) \\ C6A & 0.2361(2) & 0.3294(3) & 0.3117(2) & 3.5(1) \\ O3A & 0.5042(2) & 0.1891(3) & 0.4350(2) & 5.0(1) \\ C9A & 0.5642(3) & 0.3162(5) & 0.4667(3) & 6.9(3) \\ C7B & 0.0222(2) & 0.2490(3) & 0.0019(2) & 2.8(1) \\ N1B & 0.1053(2) & 0.1903(2) & -0.0049(2) & 3.1(1) \\ N2B & 0.0817(2) & 0.0916(3) & -0.0728(2) & 4.2(1) \\ O1B & -0.0258(2) & 0.0812(2) & -0.0149(2) & 3.1(1) \\ C2B & -0.0679(2) & 0.1820(3) & -0.0705(2) & 3.7(2) \\ C1B & 0.2149(2) & 0.2256(3) & 0.00987(2) & 5.0(1) \\ C2B & 0.3855(2) & 0.1532(4) & 0.1027(2) & 3.9(2) \\ C3B & 0.3885(2) & 0.1532(4) & 0.1524(2) & 4.1(2) \\ C4B & 0.4224(2) & 0.2899(4) & 0.1504(2) & 4.1(2) \\ C4B & 0.4224(2) & 0.289(4) & 0.1504(2) & 4.1(2) \\ C5B & 0.3318(3) & 0.3946(3) & 0.0963(2) & 3.7(1) \\ O3B & 0.5243(2) & 0.3337(3) & 0.1985(2) & 5.6(2) \\ C9B & 0.6034(3) & 0.2288(5) & 0.2450(3) & 6.9(3) \\ Compound (3) \\ Compound (3) \\ Compound (3) \\ C1 & 0.3520(1) & 0.1074(2) & 0.1155(3) & 3.4(1) \\ C2 & 0.3091(1) & 0.1824(2) & 0.2302(4) & 4.8(2) \\ C4 & 0.2414(1) & 0.0335(2) & 0.2376(4) & 4.0(2) \\ C5 & 0.2858(1) & -0.0404(2) & 0.1207(4) & 4.8(2) \\ C4 & 0.2414(1) & 0.0335(2) & 0.2376(4) & 4.0(2) \\ C5 & 0.2858(1) & -0.0404(2) & 0.1819(4) & 4.5(2) \\ C6 & 0.3414(1) & -0.0404(2) & 0.1819(4) & 4.5(2) \\ C6 & 0.3414(1) & -0.0404(2) & 0.1819(4) & 4.5(2) \\ C7 & 0.4727(1) & 0.1247(2) & 0.0970(3) & 3.1(1) \\ C9 & 0.1403(2) & -0.0080(3) & 0.3893(5) & 8.1(3) \\ N1 & 0.4098(1) & 0.1931(2) & -0.0924(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0652(3) & 4.6(2) \\ O1 & 0.4635(1) & 0.2331(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0692(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2031(2) & -0.2945(3) & 5.2(1) \\ $	CIA	0.1843 (2)	0.2014 (3)	0.2902 (2)	2.9(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A	0.2366 (2)	0.0731 (3)	0.3148 (2)	3.7 (2)
$\begin{array}{ccccc} C44 & 0.3980(2) & 0.2004(4) & 0.3866(2) & 3.8(2) \\ C5A & 0.3449(2) & 0.3286(3) & 0.3606(2) & 3.7(2) \\ C6A & 0.2361(2) & 0.3294(3) & 0.3117(2) & 3.5(1) \\ O3A & 0.5044(2) & 0.1891(3) & 0.4350(2) & 5.0(1) \\ C9A & 0.5642(3) & 0.3162(5) & 0.4667(3) & 6.9(3) \\ C7B & 0.022(2) & 0.2490(3) & 0.0019(2) & 2.8(1) \\ N1B & 0.1053(2) & 0.1903(2) & -0.0049(2) & 3.1(1) \\ N2B & 0.0817(2) & 0.0916(3) & -0.0728(2) & 4.2(1) \\ O1B & -0.0258(2) & 0.0812(2) & -0.1135(1) & 4.4(1) \\ O2B & -0.1611(2) & 0.1900(3) & -0.0987(2) & 5.0(1) \\ C8B & -0.0679(2) & 0.1820(3) & -0.0705(2) & 3.7(2) \\ C1B & 0.2184(2) & 0.2256(3) & 0.0508(2) & 3.0(1) \\ C2B & 0.2836(2) & 0.1205(3) & 0.1027(2) & 3.9(2) \\ C3B & 0.3885(2) & 0.1532(4) & 0.1544(2) & 4.1(2) \\ C5B & 0.3518(3) & 0.3946(3) & 0.0963(2) & 4.5(2) \\ C6B & 0.2470(2) & 0.3337(3) & 0.1985(2) & 5.6(2) \\ C9B & 0.6034(3) & 0.2288(5) & 0.2450(3) & 6.9(3) \\ \hline Compound (3) \\ S & 0.5000 & 0.0334(1) & 0.2500 & 3.5(1) \\ C1 & 0.3520(1) & 0.1074(2) & 0.1155(3) & 3.4(1) \\ C2 & 0.3091(1) & 0.1824(2) & 0.1700(4) & 4.6(2) \\ C5 & 0.2838(1) & -0.0404(2) & 0.189(4) & 4.5(2) \\ C44 & 0.2414(1) & 0.0335(2) & 0.2376(4) & 4.0(2) \\ C5 & 0.2858(1) & -0.0404(2) & 0.1819(4) & 4.5(2) \\ C7 & 0.4727(1) & 0.1247(2) & 0.3737(4) & 4.8(2) \\ C7 & 0.4727(1) & 0.1247(2) & 0.0970(3) & 3.1(1) \\ C9 & 0.1403(2) & -0.0080(3) & 0.3893(5) & 8.1(3) \\ N1 & 0.4098(1) & 0.1941(2) & 0.0508(3) & 3.4(1) \\ C9 & 0.1403(2) & -0.0080(3) & 0.3893(5) & 8.1(3) \\ N1 & 0.4098(1) & 0.1941(2) & -0.052(3) & 4.6(2) \\ C1 & 0.4635(1) & 0.2331(2) & -0.0094(2) & 4.8(1) \\ O2 & 0.5671(1) & 0.2096(2) & -0.0094(2) & 4.8(1) \\ O2 & 0.5671(1) & 0.2096(2) & -0.0094(3) & 5.3(1) \\ O3 & 0.1879(1) & -0.0123(2) & -22945(3) & 5.2(2) \\ \end{array} \right$	C3A	0.3439 (2)	0.0725 (3)	0.3634 (2)	4.0 (2)
$\begin{array}{ccccc} C5A & 0.3449 (2) & 0.3286 (3) & 0.3606 (2) & 3.7 (2) \\ C6A & 0.2361 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ O3A & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ C9A & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.0222 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ O1B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ O2B & -0.1611 (2) & 0.1900 (3) & -0.0987 (2) & 5.0 (1) \\ C8B & -0.0679 (2) & 0.1820 (3) & -0.0705 (2) & 3.7 (2) \\ C1B & 0.2186 (2) & 0.1205 (3) & 0.1027 (2) & 3.9 (2) \\ C3B & 0.3885 (2) & 0.1252 (4) & 0.1544 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.3393 (3) & 0.0466 (2) & 3.7 (1) \\ O3B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ Compound (3) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.6 (2) \\ C4 & 0.2414 (1) & 0.1335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2838 (1) & -0.00404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.8 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1033 (2) & -0.0040 (4) & 3.88 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.103 (2) & -0.0080 (3) & -33893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1931 (2) & -0.0924 (2) & 4.8 (1) \\ O1 & 0.4635 (1) & 0.2331 (2) & -0.0652 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2331 (2) & -0.0632 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2331 (2) & -0.0638 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2331 (2) & -0.0692 (3) & 3.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.2 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & -2945 (3) & 5.2 (2) \\ \end{array}$	C4A	0.3980 (2)	0-2004 (4)	0.3866 (2)	3.8 (2)
$\begin{array}{ccccc} C6A & 0.2361 (2) & 0.3294 (3) & 0.3117 (2) & 3.5 (1) \\ O3A & 0.5044 (2) & 0.1891 (3) & 0.4350 (2) & 5.0 (1) \\ C9A & 0.5642 (3) & 0.3162 (5) & 0.4667 (3) & 6.9 (3) \\ C7B & 0.0222 (2) & 0.2490 (3) & 0.0019 (2) & 2.8 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ O1B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ O2B & -0.1611 (2) & 0.1900 (3) & -0.0987 (2) & 5.0 (1) \\ C2B & 0.2149 (2) & 0.2256 (3) & 0.0508 (2) & 3.0 (1) \\ C2B & 0.2836 (2) & 0.1532 (4) & 0.1544 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.3518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3539 (3) & 0.0466 (2) & 3.7 (1) \\ O3B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ Compound (3) \\ Compound (3) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.1270 (4) & 4.6 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.6 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.6 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.6 (2) \\ C6 & 0.3414 (1) & -0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & -0.0080 (3) & 0.3833 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ D2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (1) \\ \end{array}$	C5A	0-3449 (2)	0.3286 (3)	0.3606 (2)	3.7 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6A	0.2361 (2)	0-3294 (3)	0.3117(2)	3.5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03A	0.5044(2)	0.1891(3)	0.4350 (2)	5.0(1)
$\begin{array}{ccccc} CIB & 0.70222 (2) & 0.7290 (3) & 0.0019 (2) & 2.6 (1) \\ N1B & 0.1053 (2) & 0.1903 (2) & -0.0049 (2) & 3.1 (1) \\ N2B & 0.0817 (2) & 0.0916 (3) & -0.0728 (2) & 4.2 (1) \\ 01B & -0.0258 (2) & 0.0812 (2) & -0.1135 (1) & 4.4 (1) \\ 02B & -0.1611 (2) & 0.1900 (3) & -0.0987 (2) & 5.0 (1) \\ CBB & -0.0679 (2) & 0.1820 (3) & -0.0705 (2) & 3.7 (2) \\ C1B & 0.2149 (2) & 0.2256 (3) & 0.0508 (2) & 3.0 (1) \\ C2B & 0.2836 (2) & 0.1205 (3) & 0.1027 (2) & 3.9 (2) \\ C3B & 0.3885 (2) & 0.1322 (4) & 0.1544 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.3518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3639 (3) & 0.0466 (2) & 3.7 (1) \\ O3B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.2030 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.6 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.00605 (3) & 0.3534 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2231 (2) & -0.0652 (3) & 4.6 (2) \\ C1 & 0.4635 (1) & 0.2331 (2) & -0.0970 (3) & 3.1 (1) \\ C9 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2245 (3) & 5.2 (2) \\ \end{array}$	C9A C7P	0.3642(3)	0.3102(3)	0.4007(3)	3 9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0222(2)	0.2490 (3)	-0.0019(2)	3.1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2R	0.0817(2)	0.0916(3)	-0.0728(2)	4.2 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OIR .	-0.0258(2)	0.0812(2)	-0.1135(1)	$4 \cdot 4(1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2B	-0.1611(2)	0.1900 (3)	-0.0987 (2)	5.0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8 <i>B</i>	-0.0679 (2)	0.1820 (3)	-0.0705 (2)	3.7 (2)
$\begin{array}{ccccc} C2B & 0.2836 (2) & 0.1205 (3) & 0.1027 (2) & 3.9 (2) \\ C3B & 0.3885 (2) & 0.1532 (4) & 0.1544 (2) & 4.1 (2) \\ C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.3518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3639 (3) & 0.0466 (2) & 3.7 (1) \\ 03B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ \hline \\ Compound (3) \\ \hline \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ C3 & 0.2533 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0040 (2) & 0.1207 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0340 (2) & 0.1207 (4) & 4.5 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0605 (3) & 0.3534 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0094 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (2) \\ \end{array}$	C1 <i>B</i>	0.2149 (2)	0-2256 (3)	0.0508 (2)	3.0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2 <i>B</i>	0-2836 (2)	0-1205 (3)	0.1027 (2)	3.9 (2)
$\begin{array}{ccccc} C4B & 0.4224 (2) & 0.2899 (4) & 0.1504 (2) & 4.1 (2) \\ C5B & 0.3518 (3) & 0.3946 (3) & 0.0963 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3639 (3) & 0.0466 (2) & 3.7 (1) \\ 03B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ \hline \\ Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ C3 & 0.2533 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0303 (2) & 0.0040 (4) & 3.8 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0605 (3) & 0.3534 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2331 (2) & -0.0652 (3) & 4.6 (2) \\ O1 & 0.4635 (1) & 0.2331 (2) & -0.00944 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0099 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (2) \\ \end{array}$	C3B	0.3885 (2)	0.1532 (4)	0.1544 (2)	4.1(2)
$\begin{array}{ccccc} C3B & 0.3518 (3) & 0.3946 (3) & 0.0965 (2) & 4.5 (2) \\ C6B & 0.2470 (2) & 0.3639 (3) & 0.0466 (2) & 3.7 (1) \\ O3B & 0.5243 (2) & 0.3337 (3) & 0.1985 (2) & 5.6 (2) \\ C9B & 0.6034 (3) & 0.2288 (5) & 0.2450 (3) & 6.9 (3) \\ \hline \\ Compound (3) \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ C3 & 0.2533 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.1 (2) \\ C8 & 0.5104 (1) & 0.1237 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0605 (3) & 0.3534 (4) & 5.6 (2) \\ C10 & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2231 (2) & -0.0652 (3) & 4.6 (2) \\ O1 & 0.4635 (1) & 0.2231 (2) & -0.0924 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0099 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (2) \\ \end{array}$	C4B	0-4224 (2)	0.2899 (4)	0.1504(2)	4.1(2)
$\begin{array}{ccccc} Cobs & 0.2470(2) & 0.5359(3) & 0.0466(2) & 3.7(1) \\ 03B & 0.5243(2) & 0.3337(3) & 0.1985(2) & 5.6(2) \\ C9B & 0.6034(3) & 0.2288(5) & 0.2450(3) & 6.9(3) \\ \hline \\ Compound (3) \\ S & 0.5000 & 0.0334(1) & 0.2500 & 3.5(1) \\ C1 & 0.3520(1) & 0.1074(2) & 0.1155(3) & 3.4(1) \\ C2 & 0.3091(1) & 0.1824(2) & 0.1700(4) & 4.6(2) \\ C3 & 0.2533(2) & 0.1448(2) & 0.2302(4) & 4.8(2) \\ C4 & 0.2414(1) & 0.0335(2) & 0.2376(4) & 4.0(2) \\ C5 & 0.2858(1) & -0.0404(2) & 0.1819(4) & 4.5(2) \\ C6 & 0.3414(1) & -0.0040(2) & 0.1207(4) & 4.1(2) \\ C8 & 0.5104(1) & 0.1933(2) & 0.0040(4) & 3.8(2) \\ C7 & 0.4727(1) & 0.1247(2) & 0.0970(3) & 3.1(1) \\ C9 & 0.1403(2) & 0.0605(3) & 0.3534(4) & 5.6(2) \\ C10 & 0.0840(2) & -0.0080(3) & 0.3893(5) & 8.1(3) \\ N1 & 0.4098(1) & 0.1491(2) & 0.0508(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0622(3) & 4.6(2) \\ O1 & 0.4635(1) & 0.2331(2) & -0.0924(2) & 4.8(1) \\ O2 & 0.5671(1) & 0.2096(2) & -0.0099(3) & 5.3(1) \\ O3 & 0.1879(1) & -0.0123(2) & 0.2945(3) & 5.2(2) \\ \end{array}$	CSB	0.3518(3)	0.3940(3)	0.0903(2)	4.5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	018	0.2470(2) 0.5243(2)	0.3337(3)	0.1985(2)	5.6 (2)
$\begin{array}{c} \text{Compound (3)} \\ \text{S} & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ \text{C1} & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ \text{C2} & 0.3091 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ \text{C3} & 0.2533 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ \text{C4} & 0.2414 (1) & -0.035 (2) & 0.2376 (4) & 4.0 (2) \\ \text{C5} & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ \text{C6} & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.1 (2) \\ \text{C8} & 0.5104 (1) & 0.1237 (2) & 0.0970 (3) & 3.1 (1) \\ \text{C9} & 0.1403 (2) & 0.0605 (3) & 0.3534 (4) & 5.6 (2) \\ \text{C10} & 0.0840 (2) & -0.0080 (3) & 0.3893 (5) & 8.1 (3) \\ \text{N1} & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ \text{N2} & 0.4018 (1) & 0.2231 (2) & -0.0924 (2) & 4.8 (1) \\ \text{O2} & 0.5671 (1) & 0.2096 (2) & -0.0090 (3) & 5.3 (1) \\ \text{O3} & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (2) \\ \end{array}$	C9B	0.5243(2) 0.6034(3)	0.2288(5)	0.2450 (3)	6.9(2)
$\begin{array}{c} \mbox{Compound (3)} \\ S & 0.5000 & 0.0334 (1) & 0.2500 & 3.5 (1) \\ C1 & 0.3520 (1) & 0.1074 (2) & 0.1155 (3) & 3.4 (1) \\ C2 & 0.3091 (1) & 0.1824 (2) & 0.1700 (4) & 4.6 (2) \\ C3 & 0.2533 (2) & 0.1448 (2) & 0.2302 (4) & 4.8 (2) \\ C4 & 0.2414 (1) & 0.0335 (2) & 0.2376 (4) & 4.0 (2) \\ C5 & 0.2858 (1) & -0.0404 (2) & 0.1819 (4) & 4.5 (2) \\ C6 & 0.3414 (1) & -0.0040 (2) & 0.1207 (4) & 4.1 (2) \\ C8 & 0.5104 (1) & 0.1933 (2) & 0.0040 (4) & 3.8 (2) \\ C7 & 0.4727 (1) & 0.1247 (2) & 0.0970 (3) & 3.1 (1) \\ C9 & 0.1403 (2) & 0.0605 (3) & 0.3893 (5) & 8.1 (3) \\ N1 & 0.4098 (1) & 0.1491 (2) & 0.0508 (3) & 3.4 (1) \\ N2 & 0.4018 (1) & 0.2231 (2) & -0.0652 (3) & 4.6 (2) \\ O1 & 0.4635 (1) & 0.2231 (2) & -0.0924 (2) & 4.8 (1) \\ O2 & 0.5671 (1) & 0.2096 (2) & -0.0009 (3) & 5.3 (1) \\ O3 & 0.1879 (1) & -0.0123 (2) & 0.2945 (3) & 5.2 (2) \\ \end{array}$	-			/	/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound (3))			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S	0.5000	0.0334(1)	0.2500	3.5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.3520(1)	0.1074(2)	0.1155(3)	3.4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.3091(1) 0.2533(2)	0.1024 (2)	0.1700(4) 0.2302(4)	4.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.2414(1)	0.0335(2)	0.2376 (4)	4.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.2858 (1)	-0.0404 (2)	0.1819 (4)	4.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.3414 (1)	-0.0040 (2)	0.1207 (4)	4·1 (2)
$\begin{array}{ccccccc} C7 & 0.4727(1) & 0.1247(2) & 0.0970(3) & 3.1(1) \\ C9 & 0.1403(2) & 0.0605(3) & 0.3534(4) & 5.6(2) \\ C10 & 0.0840(2) & -0.0080(3) & 0.3893(5) & 8.1(3) \\ N1 & 0.4098(1) & 0.1491(2) & 0.0508(3) & 3.4(1) \\ N2 & 0.4018(1) & 0.2231(2) & -0.0652(3) & 4.6(2) \\ O1 & 0.4635(1) & 0.2334(2) & -0.0944(2) & 4.8(1) \\ O2 & 0.5671(1) & 0.2096(2) & -0.0009(3) & 5.3(1) \\ O3 & 0.1879(1) & -0.0123(2) & 0.2945(3) & 5.2(2) \\ \end{array}$	C8	0-5104 (1)	0-1933 (2)	0.0040 (4)	3.8(2)
$\begin{array}{cccc} C9 & 0.1403 \left(2\right) & 0.0605 \left(3\right) & 0.3534 \left(4\right) & 5.6 \left(2\right) \\ C10 & 0.0840 \left(2\right) & -0.0080 \left(3\right) & 0.3893 \left(5\right) & 8.1 \left(3\right) \\ N1 & 0.4098 \left(1\right) & 0.1491 \left(2\right) & 0.0508 \left(3\right) & 3.4 \left(1\right) \\ N2 & 0.4018 \left(1\right) & 0.2231 \left(2\right) & -0.0652 \left(3\right) & 4.6 \left(2\right) \\ O1 & 0.4635 \left(1\right) & 0.2334 \left(2\right) & -0.0944 \left(2\right) & 4.8 \left(1\right) \\ O2 & 0.5671 \left(1\right) & 0.2096 \left(2\right) & -0.0009 \left(3\right) & 5.3 \left(1\right) \\ O3 & 0.1879 \left(1\right) & -0.0123 \left(2\right) & 0.2945 \left(3\right) & 5.2 \left(2\right) \end{array}$	C7	0-4727 (1)	0-1247 (2)	0.0970 (3)	3.1(1)
$ \begin{array}{cccccc} C10 & 0.0840 \left(2\right) & -0.0080 \left(3\right) & 0.3893 \left(5\right) & 8\cdot1 \left(3\right) \\ N1 & 0.4098 \left(1\right) & 0.1491 \left(2\right) & 0.0508 \left(3\right) & 3\cdot4 \left(1\right) \\ N2 & 0.4018 \left(1\right) & 0.2231 \left(2\right) & -0.0652 \left(3\right) & 4\cdot6 \left(2\right) \\ O1 & 0.4635 \left(1\right) & 0.2354 \left(2\right) & -0.0944 \left(2\right) & 4\cdot8 \left(1\right) \\ O2 & 0.5671 \left(1\right) & 0.2096 \left(2\right) & -0.0009 \left(3\right) & 5\cdot3 \left(1\right) \\ O3 & 0.1879 \left(1\right) & -0.0123 \left(2\right) & 0.2945 \left(3\right) & 5\cdot2 \left(2\right) \\ \end{array} $	C9	0.1403 (2)	0.0605 (3)	0.3534 (4)	5.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	0.0840 (2)	-0.0080 (3)	0.3893 (5)	8.1 (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NI	0.4098 (1)	0-1491 (2)	0.0508 (3)	3.4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2 01	0.4018(1)	0.2231(2) 0.2534(2)	-0.0032(3) -0.0044(2)	4.8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	0.5671(1)	0.2096 (2)	-0.0009 (3)	5.3(1)
	03 03	0.1879(1)	-0.0123 (2)	0.2945 (3)	5.2 (2)

Experimental. (1) $C_{16}H_{10}N_4O_4S$, crystal $0.4 \times 0.4 \times 0.6$ mm. CAD-4 diffractometer. Unit-cell dimensions: 25 reflections, 2θ range 17 to 31° . D_m by flotation (CCl₄/CHCl₃). Absorption corrections were made according to experimental ψ rotation; normalized transmission coefficients 0.97-1.00. $2\theta_{max} = 60^\circ$. Ranges of *h*, *k*, *l*; -14 to 14, 0 to 10, 0 to 27, respectively. Three standard reflections monitored every 2 h: variation < 3%. 4538 unique reflections, 2922 observed with $I > 3\sigma(I)$. R = 0.033, wR = 0.028, S = 2.30. Weighting scheme from counting statistics. Structure solved by heay-atom method. H atoms found in difference Fourier map after isotropic refinement and then refined. $(\Delta/\sigma)_{max} = 0.37$. Peaks in final $\Delta\rho$ map

(3) Fig. 1. The crystal structures of (1), (2) and (3).

0.24 to -0.21 e Å⁻³. Extinction coefficient 1.96 (length in µm). Atomic scattering factors from International Tables for X-ray Crystallography (1974). Computing programs: NRCC SDP PDP-11 package (Gabe & Lee, 1981), MULTAN and ORTEP from Enraf-Nonius (1979) Structure Determination Package. (2) C_{18} - $H_{14}N_4O_6S$, crystal $0.2 \times 0.4 \times 0.4$ mm. Unit cell: 25 reflections, 2θ range 15 to 23°. Normalized transmission coefficients 0.97-1.00. Ranges of h, k, l: -20 to 20, 0 to 13, 0 to 21, respectively. 5267 unique reflections, 2066 observed with $I > 2\sigma(I)$. R = 0.039, wR = 0.037, S = 1.63. Structure solved by direct method using the MULTAN program. $(\Delta/\sigma)_{max} = 0.37$. Peaks in final $\Delta \rho$ map 0.17 to -0.18 e Å⁻³. Extinction coefficient 0.302 (length in μ m). Other details as for (1). (3) $C_{20}H_{18}N_4O_6S$, crystal $0.2 \times 0.2 \times 0.3$ mm. Unit cell: 25 reflections, 2θ range 10 to 24° . D_m by flotation (CCl₄/CH₂Cl₂). Normalized transmission coefficients 0.94-1.00. Ranges of h, k, l: -29 to 29, 0 to 17, 0 to 11, respectively. 3004 unique reflections, 1088 observed with $I > 2\sigma(I)$. R = 0.039, wR = 0.033, S = 1.67. Structure solved by direct method using the MULTAN program, $(\Delta/\sigma)_{max} = 0.31$. Peaks in final $\Delta\rho$ map 0.15 to -0.16 e Å⁻³. Extinction coefficient 0.078 (length in μ m). Other details as for (1).

Discussion. Atomic positional parameters and equivalent isotropic temperature factors are listed in Table 1.* The molecular structures and the crystal packing

*Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51476 (95 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. diagrams are shown in Figs. 1 and 2. The bond lengths and angles are shown in Tables 2 and 3.

The bond lengths of the sydnone ring are listed in Table 4 and compared with those from other 3,4disubstituted sydnone derivatives. The bond lengths of the sydnone ring are similar in these three title structures and comparable to those of other 3,4disubstituted sydnone derivatives. The N(1)-C(7) bond lengths of the title compounds are 1.350(1), 1.352(3) and 1.358(3) Å, respectively. As found before, the lengthening of the N(1)-C(7) bond compared with the

Table 2. Bond lengths (Å) for (1), (2) and (3)

Comp	ound (1)									
S	C7A	1.736 (2)	S	C7B	1.735 (2)	CIA	C2A	1.373 (2)			
C1A	C6A	1.381 (2)	CIA	N1A	1.452 (2)	C2A	C3A	1.382 (2)			
C3A	C4A	1.369 (3)	C4A	C5A	1.370 (3)	C5A	C6A	1.383 (3)			
C7A	C8A	1-412 (2)	C7A	N1A	1.347 (2)	C8A	01A	1.409 (2)			
C8A	O2 <i>A</i>	1.204 (2)	N1A	N2A	1.308 (2)	N2A	01 <i>A</i>	1.380 (2)			
C1B	C2B	1-376 (2)	C1B	C6B	1.377 (2)	C1 <i>B</i>	N1 <i>B</i>	1.445 (2)			
C2B	C3B	1-377 (3)	C3B	C4B	1.369 (3)	C4B	C5B	1.383 (3)			
C5B	C6B	1-378 (3)	C7B	C8 <i>B</i>	1.408 (2)	C7B	N1 <i>B</i>	1.352 (2)			
C8B	O1B	1.402 (2)	C8B	O2B	1.205 (2)	N1 <i>B</i>	N2B	1.307 (2)			
N2 <i>B</i>	O1 <i>B</i>	1.383 (2)									
Compound (2)											
S	C7A	1.729 (3)	S	C7B	1.730 (3)	C7A	N1 <i>A</i>	1.351 (4)			
C7A	C8A	1.415 (4)	N1A	N2A	1.303 (3)	NIA	C1A	1.448 (3)			
N2A	01A	1.377 (3)	01A	C8A	1.416 (3)	O2A	C8A	1.194 (3)			
C1A	C2A	1.373 (4)	CIA	C6A	1.366 (4)	C2A	C3A	1.369 (4)			
C3A	C4A	1.380 (5)	C4A	C5A	1.378 (4)	C4A	O3A	1.361 (4)			
C5A	C6A	1.388 (4)	O3A	C9A	1.414 (5)	C7B	N1 <i>B</i>	1.352 (4)			
C7B	C8B	1.411 (4)	N1 <i>B</i>	N2 <i>B</i>	1.312 (3)	N1 <i>B</i>	C1 <i>B</i>	1.443 (3)			
N2 <i>B</i>	O1B	1.375 (3)	01 <i>B</i>	C8B	1.425 (4)	O2 <i>B</i>	C8 <i>B</i>	1.201 (4)			
C1 <i>B</i>	C2B	1.362 (4)	C1B	C6B	1.382 (4)	C2B	C3B	1.376 (4)			
C3B	C4 <i>B</i>	1.377 (5)	C4 <i>B</i>	C5B	1.381 (5)	C4B	O3B	1.364 (4)			
C5B	C6 <i>B</i>	1.369 (4)	O3 <i>B</i>	C9 <i>B</i>	1-421 (5)						
Compound (3)											
S	C7	1.732 (3)				CI	C2	1.376 (4)			
čı	Č6	1.373 (4)	CL	NI	1.445 (4)	Č2	Č3	1.375 (4)			
~	23	1.373(4)	č.		1 202 (4)	<u> </u>	õ	1 250 (4)			

C8 C7 N1

1.370 (4)

1-196 (4)

1.442 (4)

C7 N1

N2

01 C10

1.410(4)

1.483 (5)

1.373 (3)

C8 C9

1.411 (4)

1.358(3)

1.309 (3)

Fig. 2. Packing diagrams for (1), (2) and (3).

C5 C8 C9 C6 O2 O3

	Table 3. Bond angles $(^{\circ})$ for (1) , (2) and (3)							Table 3 (cont.)							
								C2A	C1A	C6A	122.0 (3)	C1A	C2A	C3A	119-4 (3)
Comp	ound (1)							C2A	C3A	C4A	119-8 (3)	C3A	C4A	C5A	120-5 (3)
C7A	S	C7B	97.38 (7)	C2A	C1A	C6A	122.9 (2)	C3A	C4A	O3A	115-5 (3)	C5A	C4A	03 <i>A</i>	124.0 (3)
C2A	C1A	N1A	119.1 (1)	C6A	C1A	N1A	117.9(1)	C4A	C5A	C6A	119-8 (3)	C1A	C6A	C5A	118-6 (3)
C1A	C2A	C3A	117.9 (2)	C2A	C3A	C4A	120-6 (2)	C4A	O3A	C9A	118-4 (3)	S	C7B	N1 <i>B</i>	125.7 (2)
C3A	C4A	C5A	120.4 (2)	C4A	C5A	C6A	120.7 (2)	S	C7B	C8B	127.8 (2)	N1 <i>B</i>	C7B	C8 <i>B</i>	106-4 (2)
C1A	C6A	C5A	117.5 (2)	S	C7A	C8A	127-4 (1)	C7B	N1 <i>B</i>	N2 <i>B</i>	115.0 (2)	C7B	N1 <i>B</i>	C1B	128-1 (2)
S	C7A	N1A	126-5(1)	C8A	C7A	N1 <i>A</i>	106-1 (2)	N2 <i>B</i>	N1 <i>B</i>	C1B	116-9 (2)	N1 <i>B</i>	N2 <i>B</i>	01 <i>B</i>	104.3 (2)
C7A	C8A	014	103.7(1)	C7A	C8A	O2A	134-8 (2)	N2 <i>B</i>	01 <i>B</i>	C8B	111.1 (2)	C7B	C8 <i>B</i>	01 <i>B</i>	103.3 (2)
01 <i>A</i>	C8A	O2A	121.5 (1)	C1A	NIA	C7A	129-4 (1)	C7B	C8 <i>B</i>	O2 <i>B</i>	136-5 (3)	01 <i>B</i>	C8 <i>B</i>	O2 <i>B</i>	120.2(3)
C1A	N1A	N2A	115-7 (1)	C7A	N 1 <i>A</i>	N2A	115-0(1)	N1 <i>B</i>	C1 <i>B</i>	C2B	119.0 (3)	N 1 <i>B</i>	C1 <i>B</i>	C6B	118.7 (3)
N1A	N24	01 <i>A</i>	104-2 (1)	C8A	01 <i>A</i>	N2A	110-9(1)	C2B	C1 <i>B</i>	C6B	122.3 (3)	CIB	C2B	C3B	119-1 (3)
C2 <i>B</i>	C 1 <i>B</i>	C6 <i>B</i>	123.0 (2)	C2 <i>B</i>	C 1 <i>B</i>	N1 <i>B</i>	117-4 (1)	C2B	C3B	C4B	119.6 (3)	C3B	C4B	CSB	120.5 (3)
C6 <i>B</i>	C1 <i>B</i>	N1 <i>B</i>	119-5 (1)	C1 <i>B</i>	C2B	C3B	118-2 (2)	C3B	C4B	O3B	124.4 (3)	CSB	C4B	038	115.1 (3)
C2B	C 3 <i>B</i>	C4 <i>B</i>	120-2 (2)	C3 <i>B</i>	C4B	C5B	120.7 (2)	C4 <i>B</i>	C5B	C6B	120.3 (3)	C1B	C6B	C 5B	118-2 (3)
C4 <i>B</i>	C5B	C6 <i>B</i>	120-3 (2)	C1 <i>B</i>	C6 <i>B</i>	C5B	117-6 (2)	C4 <i>B</i>	O3B	C9 <i>B</i>	118-5 (3)				
S	C7B	C8B	128-1(1)	S	C7B	N1B	125-6(1)	<u> </u>	1/7	、					
C8 <i>B</i>	C7B	N1 <i>B</i>	106-3 (1)	C7B	C8B	01B	103.9(1)	Comp	ouna (3)		~ ~	.	~ ~	
C7B	C8 <i>B</i>	02 <i>B</i>	135-2 (2)	O1B	C8B	028	120.9 (2)	C7	S	C7	100-3(1)	C2	CI	C6	122-3 (3)
C1 <i>B</i>	N1 <i>B</i>	C7B	129-6 (1)	C1 <i>B</i>	N1B	N2B	115-9(1)	C2	Cl	N1	117-8 (3)	C6	Cl	NI	119.9 (3)
C7B	N1 <i>B</i>	N2 <i>B</i>	114-4 (1)	N1 <i>B</i>	N2B	OIB	104-4 (1)	C1	C2	C3	118-9 (3)	C2	C3	C4	120.2(3)
~		、 、						C3	C4	C5	119.5 (3)	C3	C4	03	124.9 (3)
Comp	ound (2)		_	-			C5	C4	03	115.5 (3)	C4	CS	C6	120.9 (3)
C7A	S	C7B	101.0(1)	S	C7A	NIA	126.2(2)	C1	C6	CS	118-2(3)	01	C8	01	$103 \cdot 3(2)$
S	C7A	C8A	127.8 (2)	N1A	C7A	C8A	106.0 (2)	C7	C8	02	135-0 (3)	01	C8	02	121.6 (3)
C7A	N1A	N2A	115-4 (2)	C7A	N1A	CIA	129.9 (2)	S	C7	C8	127-6 (2)	S	07	NI	125.8 (2)
N2A	NIA	C 1A	114.7 (2)	N1A	N24	01A	104-1 (2)	C8	C7	NI	106-4 (2)	010	09	03	107.2 (3)
N2A	01 <i>A</i>	C8A	111.3 (2)	C7A	C8A	01A	$103 \cdot 3(2)$	C1	NI	C7	128.9(2)	CI	NI	N2	110.9(2)
C7A	C8A	02 <i>A</i>	136-0 (3)	01 <i>A</i>	C8A	O2A	120.7 (3)	C7	N1	N2	114.2(2)	NI	N2	01	104.5 (2)
N1A	C1A	C2A	119-1 (3)	N1A	C1A	C6A	118.7(3)	C8	01	N2	111-5 (2)	C4	03	C9	117.9 (2)

Table 4. Comparison of selected bond lengths (Å) and some conformational parameters of the sydnone ring in 3,4-disubstituted compounds

O(1)–C(8)	(1) ^a 1·409 (2) 1·402 (2)	(2) ^a 1·416 (3) 1·425 (4)	(3) ^a 1·410 (4)	(4) ^b 1-419 (4)	(5) ⁶ 1·399 (2)	(6) ^c 1·406 (3)	(7) ^d 1·400 (4)	(8) ^e § 1-416 (6)
O(1)N(2)	1·380 (2) 1·383 (2)	1·377 (3) 1·375 (3)	1.373 (3)	1-379 (3)	1.382 (2)	1.379 (2)	1.380 (4)	1.368 (5)
N(2)—N(1)	1·308 (2) 1·307 (2)	1·303 (3) 1·312 (3)	1.309 (3)	1.295 (3)	1.309 (2)	1.318 (2)	1.325 (4)	1-318 (5)
N(1)-C(7)	1·347 (2) 1·352 (2)	1·351 (4) 1·352 (4)	1.358 (3)	1.350(3)	1.352 (2)	1.351 (2)	1.350 (4)	1.358 (6)
C(7)–C(8)	1-412 (2) 1-408 (2)	1·415 (4) 1·411 (4)	1.411 (4)	1-413 (4)	1.420 (3)	1.416 (2)	1-418 (4)	1.417 (7)
C(8)—O(2)	1·204 (2) 1·205 (2)	1 · 194 (3) 1 · 201 (4)	1.196 (4)	1 · 196 (3)	1-212 (2)	1.217 (2)	1.205 (4)	1-196 (6)
C(7)–C(9)				1-444 (2)	1.453 (4)	1-465 (3)	1.464 (4)	1-429 (6)
S-C(7)	1·736 (2) 1·735 (2)	1·729 (3) 1·730 (3)	1.732 (3)					
⊿[O(2)]*	0·047 (3) 0·015 (3)	0-037 (5) 0-029 (5)	0.044 (4)	0.011 (6)	0.001 (3)	0.041 (2)	0.013 (2)	0.019 (4)
⊿[S]†	0·053 (3) 0·045 (3)	0·078 (5) 0·100 (5)	0.055 (4)					
ω(°)	53·7 (1) 62·8 (1)	51·0 (1) 59·2 (1)	53-5 (1)	68-4 (2)	78-6 (1)	54-9	63-8	63.0 (2)
x ²‡	84·5 43·4	7·1 41·4	37-0	5-4	16-4	195-6	21.1	0.7
Color	Light brown	Transparent	Transparent	Brown	Light brown	Transparent	Bright yellow	Light brown

References: (a) this work; (b) Ueng, Wang & Yeh (1987a); (c) Hašek, Obrda, Kuml, Nešpurek, Chojnacki & Šorm (1978); (d) Hašek, Obrda, Kuml. Nešpurek & Šorm (1979); (e) Ueng, Wang & Yeh (1987b).

* Deviation (Å) of O(2) the mean plane of the sydnone ring.

† Deviation (Å) of S from the mean plane of the sydnone ring.

 $\ddagger \chi^2 \text{ is defined as } \sum_{i=1}^n \Delta d_i^2 / (\sigma_x^2 + \sigma_y^2 + \sigma_z^2 \text{ as in } (b).$

§ (4) 4-acetyl-3-(p-tolyl)sydnone; (5) 4-acetyl-3-phenylsydnone oxime; (6) 4-(3-methyl-1-buten-2-yl)-3-phenylsydnone; (7) 4-(cyclohexen-1-yl)-3-phenylsydnone; (8) 3-phenyl-4-(N-carbamoyl-1,4,2-oxathiazolimin-3-yl)sydnone.

corresponding bond in 3,4-disubstituted sydnone derivatives may also be attributed to the steric effect (Ueng, Wang & Yeh, 1987a,b).

The bond lengths (S-C), bond angles (CSC') and the angles between the CSC' plane and the sydnone ring of the title compounds and other diaryl sulfides are comparable (Von Deuten & Klar, 1981). There is no apparent trend in such bond lengths. A π interaction between the S atom and the sydnone ring would be expected if the CSC plane and the aryl ring were coplanar. However, this is not obvious; as an example 4-(dimethylamino)phenyl 4-nitrophenyl sulfide (Von Deuten & Klar, 1981) does have one of the aryl rings which is coplanar with the CSC plane, but both S-C lengths are about the same. The shortening of the S-C bonds of the title compounds relative to those of other diaryl sulfides and the average bond lengths of 1,3,5-trithiane [1.818 (5) Å (Fleming & Lynton, 1967)] may be attributable to orbital eletronegativity effects.

The C(7)–S(1)–C(7') bond angles of the title compounds $[97.4(1), 101.0(1) \text{ and } 100.3(1)^{\circ}]$ are comparable with corresponding angles in the cyclic 1,3,5-trithane $[99.2(6) \text{ and } 100.7(5)^{\circ}]$. The dihedral angles (ω) between the sydnone ring and the phenyl ring are listed in Table 4 for 3,4-disubstituted compounds. It is certainly clear that all such compounds have angles greater than 50°.

Compound (3) has exact C_2 molecular symmetry bisecting the C-S-C' angle which coincides with the crystallographic twofold axis along the *b* axis. Compound (1) has a pseudo twofold axis; the two sydnone-aryl parts of the compound are essentially the same. However, compound (2) adopts a quite different conformation from those of the other two compounds. The difference can be seen clearly in Fig. 1. The packing in the crystal is also quite different (Fig. 2).

Instead of the 'morino' conformation (Von Deuten & Klar, 1981) with one ring in the C–S–C' plane and the other perpendicular, as found in most other diaryl sulfides, the three title compounds have the butterfly conformation $[61.7 (1), 59.3 (1); 88.1 (1), 73.6 (1); 72.9 (1), 72.9 (1)^{\circ}$, respectively].

The authors would like to express their appreciation for the financial support of this work to the National Science Council.

References

- Enraf-Nonius (1979). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FLEMING, J. E. & LYNTON, H. (1967). Can. J. Chem. 45, 353-357.
- GABE, E. J. & LEE, F. L. (1981). Acta Cryst. A37, S339.
- HAŠEK, J., OBRDA, J., KUML, K., NEŠPŮREK, S., CHOJNACKI, H. & Šorm, M. (1978). Acta Cryst. B34, 2756–2759.
- HAŠEK, J., OBRDA, J., KUML, K., NEŠPŮREK, S. & ŠORM, M. (1979). Acta Cryst. B35, 2449–2451.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- UENG, C.-H., WANG, Y. & YEH, M.-Y. (1987a). Acta Cryst. C43, 1122-1125.
- UENG, C.-H., WANG, Y. & YEH, M.-Y. (1987b). J. Chin. Chem. Soc. 34, 105-110.
- VON DEUTEN, K. & KLAR, G. (1981). Cryst. Struct. Commun. 10, 231–239.

Acta Cryst. (1989). C45, 475-478

Structures of two Psychoactive 1,4-Benzodiazepines

BY HELEN J. KEMMISH AND THOMAS A. HAMOR

Department of Chemistry, University of Birmingham, Birmingham B15 2TT, England

(Received 4 September 1988; accepted 18 October 1988)

Abstract. (I) 8-Chloro-6-(2-chlorophenyl)-2-methyl-4H-imidazo[1,2-a][1,4]benzodiazepine, $C_{18}H_{13}Cl_2N_3$, $M_r = 342 \cdot 2$, monoclinic, $P2_1/c$, $a = 13 \cdot 168$ (3), b =14·852 (3), $c = 8 \cdot 286$ (2) Å, $\beta = 94 \cdot 45$ (2)°, V =1615·6 Å³, Z = 4, $D_x = 1 \cdot 407$ g cm⁻³, λ (Mo K α) = 0·71069 Å, $\mu = 3 \cdot 95$ cm⁻¹, F(000) = 704, T = 293 K, R = 0.042 for 796 observed reflections. (II) 8-Chloro-6-(2-chlorophenyl)-1-(4-pyridyl)-1,2,4-triazolo[4,3-a]-[1,4]benzodiazepine, $C_{21}H_{13}Cl_2N_5$, $M_r = 406 \cdot 3$, orthorhombic, *Pbca*, $a = 21 \cdot 560$ (3), $b = 8 \cdot 790$ (1), c =19·866 (5) Å, $V = 3764 \cdot 9$ Å³, Z = 8, $D_x =$ 1.434 g cm⁻³, λ (Mo K α) = 0.71069 Å, μ = 3.5 cm⁻¹, F(000) = 1664, T = 293 K, R = 0.042 for 2196 observed reflections. The angle between the mean planes of the chlorophenyl ring and the fused benzo moiety is 77 (1)° in (I) and 78 (1)° in (II). The seven-membered heterocyclic ring adopts a cycloheptatriene-like boat conformation with bow and stern angles of 55 (1) and 33 (1)° in (I), and 53.4 (7) and 34.3 (7)° in (II). In both compounds the five-membered heterocyclic ring and the two aromatic rings are each planar to within +0.02 Å. Bond lengths and angles are normal.

0108-2701/89/030475-04\$03.00

© 1989 International Union of Crystallography